MODEL FITTING FOR
YEARLY FERTILITY DATA
iIN URBAN MYANMAR

ZYAING KYAING THET

 JULY, 1997



MODEL FITTING
FOR YEARLY FERTILITY DATA
IN URBAN MYANMAR



MODEL FITTING FOR YEARLY FERTILITY DATA
IN URBAN MYANMAR

by

KYAING KYAING THET

A thesis submitted as a partial fulfilment towards

the Degree of Master of Economics

in the

Institute of Economics

Yangon

Myanmar

July, 1997



INSTITUTE OF ECONOMICS
YANGON
DEPARTMENT OF STATISTICS

MODEL FITTING FOR YEARLY FERTILITY DATA
IN URBAN MYANMAR

by

KYAING KYAING THET

This thesis is submitted to the Board of Examiners in Statistics in partial

fulfilment of the requirement for the degree of Master of Economics.

A’ "
\ - ‘ZJ‘ “r-o g IA}J5' '
Examiner qg&eér?@x?z}g‘ix%i% [ 5 Examiner
vof:_ooqc'::sacc::szg,

A

Profegsqy: Maw Than

IR R %@‘@3‘&%&10&
Yangon.
b -
1997 July //LCL’/
(KT Wi}
REGISTRAR

INSTITUTE OF OIS



& T Y
ol s Y
CE i
< | 7
- ’ e R K. e / £
. R TR /
ACKNOWLEDGEMENT .7 "~ _”/'#
'\B“; _»11]'\'\_;-(_)1\.. )

I am very grateful to the Professor Daw Khin San
Myint, Head of the Department of Statistics, for her
kindness to give me permission to continue my thesis and
helped me in many ways in preparing this thesis.

I also thank to former Professor Dr. Thet Lwin,
Department of Statistics, who give me permission to write
this thesis. Again, I feel grately thankful to Associate
Professor Dr. Daw Than Toe, from whom I received a lot of
guidance.

I convey my heartfelt thanks to my supervisor, Daw Cho
Cho Wai, Assistant Lecturer, Department of Statistics, from
whom I have received a lot of guidance and wholehearted
aid.

I would like to express my thanks to Daw Maw Maw Oo,
Head of Department of English, Institute of Economics, for
editing the manuscript.

Finally, I would 1like to express my thanks to my

parents who offer me financial and all other necessary

support.




Chapter

CONTENTS
Title

LIST OF TABLES
LIST OF FIGURES

ABSTRACT
I INTRODUCTION
1.1 Introduction
1.2 Sources of Fertility Data in Myanmar
1.3 Requirement of Fitting a Suitable Mocdel
for the Fertility Data
1.4 Compilation of Yearly Fertility Data

from Vital Statistics Reports

II INTER-DEPENDENCE STRUCTURE OF FERTILITY DATA

O

NN

2
3
4

[AV]

Introduction

Sample Autocorrelation and Their Properties

Partial Autocorrelation Function

Inter-Dependence Structure of Live-Births

of Urban Myanmar

Inter-Dependence Structure of Mid-year

Estimated Population

Inter-Dependence Structure of Various

Transformed Series

2.8.1 Inter-Dependence Structure of
First Difference Series for
Live-Births of Urban Myanmar

2.6.2 Inter-Dependence Structure of
First difference Series for
Mid-year Estimated Population

2.8.3 Inter-Dependence Structure of
Log-Transformed Series for
Live-Births of Urban Myanmar

2.6.4 Inter-Dependence Structure of
Log-Transformed Series for
Mid-year Estimated Population

Page No

iv
vi

vii

K WK R

10
10
11
14
17
21
24

g

30

33



Chapter

IIL

Title . Page No

2.8+ Inter-Dependence Structure of
Standardized Series for
Live-Births of Urban Myanmar

2.6.6 Inter-Dependence Structure of

' Standardized Series for
Mid-year Estimated Population

AUTOREGRESSIVE MODEL FITTING IN FERTILITY DATA

o |
3.2

Intreduction
Discrete Autoregressive Model and
Its Properties

3.2.1 Autocovariance and Autocorrelation
Functions

o S The Partial Autocorrelation
Function ‘

. W Stationary Conditions for
Autoregressive Process

F3.2:1 The Spectrum of the AR(p) Process

Estimation of the Parameters

3.3.1 Method of Moments

3.3.2 Max_mum Likelihood Method of
Estimation

Test for Model Fitting and Parameter

Estimation

AR Model Fitting to the Live-Births and

Population

3.5:1 AR Model Fitting to the
Live-Births of Urban Myanmar

3.5.2 AR Model Fitting to the
Standardized Series of Live-Births

3.5.3 AR Model Fitting to the
Logarithmic Transformed Series
of Live-Births

3.5.4 AR Model Fitting to the
First Difference Series of
Live-Births

31

38

42

45
45
46

52

57

58

60

61

64

15

79

81

82

84

B6



Chapter Title Page No

.95 AR Model Fitting to the g8
Mid-Year Estimated Population
o . AR Model Fitting to the S1

Log-Transformed Series of Mid-Year
Estimated Population

3.5.7 AR Model Fitting to the 93
Standardized Series of Mid-Year
Estimated Population

3.5.8B AR Model Fitting to the 85
First Difference Series of Mid-Year
Estimated Population

3.6 Comments on the Model Fitting 37
v EX-ANTE PROJECTION OF FERTILITY DATA 98
4.1 Projection of Live-Births Data for 93

Urban Area
4.1.1 Three Basic Forms for 99
the Forecasts

4.1.2 AR Model for Live-Births 103
Forecasting
4.2 Projection of Population Data for 108

Selected Towns in Urban Myanmar
4.3 Future Trend of Fertility Data 108

in Urban Myanmar

\'% CONCLUSION 114
APPENDIX
REFERENCES

iii



LIST OF TABLES

Table No Title Page No

2.1 Characteristic Behaviour of ACF, PACFE, 15
of AR, MA and ARMA Processes

2.la Sample Autocorrelations for Live-Births 18
of Urban Myanmar

2.1b Sample Partial Autocorrelations for Live-Births 19
of Urban Myanmar

2.2a Sample Autocorrelations for Mid-Year Estimated 22
Population

2.2b Sample Partial Autocorrelations for Mid-Year 5.4
Estimated Population

2.3a Sample Autocorrelations for First Difference 28
Series of Live-Births

2.3b Sample Partial Autocorrelations for First 28
Difference Series of Live-Births

2.4a Sample Autocorrelations for First Difference 31
Series of Mid-Year Estimated Population

2.4b Sample Partial Autocorrelations for First 31
Difference Series of Mid-Year Estimated Population

2.5a Sample Autocorrelations for Log-Transformed 34
Series of Live-Births

2.5b Sample Partial Autocorrelations for 34

Log-Transformed Series of Live-Births of
Urban Myanmar

2.6a Sample Autocorrelations for Log-Transformed 37
Series of Mid-Year Estimated Population
2.6b Sample Partial Autocorrelations for 2

Log-Transformed Series of Mid-Year
Estimated Population

2.7a Sample Autocorrelations for Standardized Series 40
of Live-Births of Urban Myanmar
2.7b Sample Partial Autocorrelations for 40

Standardized Series Live-Births of
Urban Myanmar

2.8a Sample Autocorrela*tions for Standardized Series 43
of Mid-Year Estimated Population

2.8b Sample Partial Autocorrelations for Standardized 43
Series of Mid-Year Estimated Population

iv



Table No Title Page No

3.1 Method of Moments Estimates of Parameters 81
for Live-Births of Urban Myanmar

3.2 Porte Manteau Lack of Fit Test 82

3.3 Method of Moments Estimates of Parameters 83
for Standardized Series of Live-Births

3.4 Porte Manteau Lack of Fit Test 84

3.5 Method of Moments Estimates of Parameters 85
for Log-Transformed Series of Live-Births

3.6 Porte Manteau Lack of Fit Test 86

3.7 Method of Moments Estimates of Parameters 87
for First Difference Series of Live-Births

3.8 Porte Manteau Lack of Fit Test 87

3.9 Method of Moments Estimates of the Parameters 89
for Mid-Year Estimated Population

3.10 Porte Manteau Lack of Fit Test 90

3.11 Method of Moments Estimates of the Parameters 81
for Log-Transformed Series of Mid-Year Estimated
Population

3.12 Porte Manteau Lack of Fit Test 92

3.13 Method of Moments Estimates of the Parameters 93
for Standardized Series of Mid-Year Estimated
Population

3.14 Porte Manteau Lack of Fit Test 94

3.15 Method of Moments Estimates of the Parameters 95
for First Difference Series of Mid-Year Estimated
Population

3.16 Porte Manteau Lack of Fit Test 96

4.1 Forecast for the Total Live-Births series for 106
1968-2000 Using AR(1l) Model

4.2 The Estimated Population of the Selected Towns 110
in Urban Myanmar '

4.3 The CBR for Selected Towns in Urban Myanmar 112



LIST OF FIGURES

Figure No Title Page No

2.la Sample Autocorrelations for Live-Births 20
of Urban Myanmar

2.1b Sample Partial Autocorrelations for Live-Births 20
of Urban Myanmar

2.2a Sample Autocorrelations for Mid-Year Estimated g
Population

2.2b Sample Partial Autocorrelations for Mid-Year 23
Estimated Population

2.3a Sample Autocorrelations for First Difference 29
Series of Live-Births of Urban Myanmar

2.3b Sample Partial Autocorrelations for First 29
Difference Series Live-Births of Urban Myanmar

2.4a Sample Autocorrelations for First Difference 32
Series of Mid-Year Estimated Population

2.4b Sample Partial Autocorrelations for First 32

Difference Series of Mid-Year Estimated
Population

2.5a Sample Autocorrelations for Log-Transformed 25
Series of Live-Births of Urban Myanmar
2.5b Sample Partial Autocorrelations for _ 35

Log-Transformed Series of Live-Births of
Urban Myanmar

2.6a Sample Autocorrelations for Log-Transformed 38
Series of Mid-Year Estimated Population
2.6b Sample Partial Autocorrelations for 38

Log-Transformed Series of Mid-Year
Estimated Population

2.7a Sample Autocorrelations for Standardized Series 41
of Live-Births of Urban Myanmar

2.7b Sample Partial Autocorrelations for 41
Standardized Series Live-Births of Urban Myanmar

2.8a Sample Autocorrelation for Standardized Series 44
of Mid-Year Estimated Population

2.8b Sample Partial Autocorrelation for Standardized 44
Series of Mid-Year Estimated Population

4.1 Forecast for the Total Live-Births Series 107

for 1968-2000 Using AR(1l) Mcdel

vi



ABSTRACT

The main case of error in pcpulation projections during
the last decades has been due to 1lack of success 1in
correctly future fertility 1level. So, it needs to fit a
suitable model to the existing fertility data for prcjecting

the fertility level.

In this thesis, a time series model is fitted by the
yearly fertility data of the selected towns in Urban
Myanmar. The yearly live births data in Myanmar are obtained
from the Vital Statistics Reports during the years 1968 to
1988 which were jointly published by the Central Statistical
Organization and Department of Health. So, in order to make
a reasonable analysis, only 125 common towns are analysed in

this thesis.

In fitting a suitable model, first, the type of the
model is selected by playing a major role of autocorrelation
and partial autocorrelation functions. Second, the model
parameters were estimated by using the moment method. Third,
the order of fitted model is decided by using the MC Clave
Criterion. And lastly, the future trend of fertility level
is presented by using the fitted model.

vii



CHAPTER I

INTRODUCTION

1.1 Introduction

Fertility is an essential factor of human reproduction.
Fertility constitutes a positive element of fundamental

population growth together with another element but negative

one, mortality.

While the mortality trend has been obviocusly on a
decrease in many developing countries since the end cof world
war II, their level of fertility has remained almost
unchanged and kept their height almost as high as before.
It has been well known that the difference between fertility
and mortality trends has brought about a rapid population
growth after remarked as a population explosion. The study
of fertility has become a great concern of many people in
various fields, all among demographers and statisticians of
many countries. It has become widely known that the trend
of population growth of modern times depends much on the

trend of fertility.

LFertility is the measure of the reproductive
performance of women as obtained from the statistics of the
ﬁumber of live births. The number of births occurring in
any year in a population is determined partly by demographic
factors such as the age and sex distribution, the number of

married couples and their distribution by age, duration of



marriage, and number of children already born. The number
is also partly determined by many other factors related to
the social and economic, environment of that particular
time, such as housing conditions, education, income,

religion and current attitudes towards family size. )/

When studying fertility trends in a given country, OoOr
the differences in fertility between different countries,
the demographer aims to determine the extent to which
differences in the number of Lkirths have been caused by
difference in these demographic factors and hence to deduce
what differences remain to be explained by social and
economic conditions. It is very difficult to isolate and
measure the effect of each of these factors as they are so
closely interrelated. Consequently the study of fartility
involves the wuse of a number of methods of fzartility
measurement, each with advantages and disadvantages,
suitable under certain circumstances and unsuitable under

others.

Many demographers have studied the level of fertility
from the demographic point of viewi} But, in this thesis,
the fertility data are studied by tiﬁe series model. First,
the model will be f;tted by using fertility data from the
Vital Statistics Reports published jointly by the Central
Statistical Organization (CSO) and Department of Health.
The live-births data of the towns with complete data will be
used in fitting the model. Using this model, live-b.rths of

urban Myanmar will be projected and analysed by suitable

time series methods. Demographic techniques will be used to



find out the fertility rates. The fertility situations of

future urban Myanmar will than be assessed.

1.2 Sourcé of Fertility Data in Myanmar

. The main sources of derﬁographic data in Myanmar are
the population censuses and the vital registration and
statistics system. But in Myanmar, as in many developing
countries, information on the censuses and vital
registration and statistics system have defectives for
demographic research. )

The first post-war modern nation-wide census was
conducted in 1973. One purpose of the census was to obtain
reliable population data, but the primary purpose was to
prepare the Electoral Rolls for the Constitutional

Referendum in 1973 and the Constituent Assembly in 1974

(Nyunt, 1978: 13). According to the 1973 census, it
covered about 85.1 per cent of total population (IMD, 1976:
1-3) . It was the first census in Myanmar which gave
population by single year of age. But, it has no

information about the number of births and deaths for the
whole country.

The latest census was conducted in 1983. The coverage
of this census, the questionnaires were used in twc types,
a short form and a long form. The short form was .given 80
per cent of total population. The long form was addressed
the remaining 20 per cent which are selected randomly. The
short form includes only seven basic questions: name,
relationship to the head of household, sex, age, marital
status, race and religion. The long form questionnaire
included an additional eleven questions on socio—-economic

and fertility characteristics such as school attendance,



occupation, highest standard passed, literacy, industry,
employment status, reason for not working, whether working
during 1last twelve months, <children ever born alive,
children still 1living and the date of birth of the last
child. Although the 1983 census had included the fertility
data, it covered only 20 per cent of the total population.
Moreover, the subsequent census was not conducted in 1993
and it is difficult to study population growth and changes

in population composition.

Another source of demographic data in Myanmar is the
Vital Statistics Reports. Nowadays, the wvital statistics
are c¢ollected under the authority of the Department of
Health, and compiled and published jointly by the CSO. I
1968, 152 towns have rendered both births and deaths returns
which is about 81.8 per cent of the urban total population.
It was gradually extended to the other towns by the end of
1988 . According to the 1988 wvital statistics report, the
vital registration system covered 97.4 per cent of the total
urban population but covered only 63 per cent of total rural

population.

Therefore, the yearly fertility data for the urban area
can be obtained from the Vital Statistics Reports. In this
thesis, the live-births data of the towns with most complete
data are used from the Vital Statistics Reports in fitting

the time series model.
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1.3 Requirement of Fitting a Suitable Model for the

Fertility Data

The main cause of errors in population projeétions
during the "last decades has been due to demographers' lack
of success in correctly predicting future births. (Joop,
JASA, 1985) Demographers often appear simply to avoid the
problem by looking at period fertility rates. Probably the
most frequently used to measure the level of fertility 1is
the total fertility rate (TFR), which is equal to the sum
of the age-specific fertility rates observed in the same
calendar year. Generally, the wvalue of the TFR 1is
interpreted as the average number of children born to the
women in the reproductive ages ( i.e. from 15 to 49 years
of age ). A well-known though still often ignored-problem
is that the movement of the TFR is affected by chénges in
the age pattern of the fertility. As a consequence, solely
looking at recent changes of the TFR may lead to an
incorrect interpretation of recent changes in fertility
behaviour.

Obviously, it is necessary to make use of estimates or
projections in order to assess recent changes in fertility
behaviours. In this thesis, a time series model 1is
presented to project the fertility 1level of recent
situation on the basis of observations already available in
the Vital Statistics Reports from 1968 to 1988 for urban

areas.



1.4 Compilation of Yearly Fertility Data from Vital

Statistics Reports

The main sources of yearly fertility data in Myanmar
is the wvital statistics reports. In Myanmar, vital
statistics were collected by Municipal Health Offices in
urban areas and by the village headmen in the rural area
during the colonial period. Births, Deaths and Marriages
Act was first enacted in 1886 and the registration of
vital events (births and deaths) was introduced in Yangon
and some parts of Lower Myanmar. Then, it was extended
to the towns of Upper Myanmar in 1906 and the villages of
Upper Myanmar in 1907. The system covered nearly 80 per
cent of the total population. In 1931, about 82.5 per
cent of the population was covered by the Vital
Registration System. ( R. M. Sundrum, 1957)

In the post war period, a new vital registration
system starting with Yangon City and 15 other towns was
introduced in February, 1962. 1968, during the year, 152
towns have rendered both birth and death returns which is
about 81.8 per cent of the urban population. The number
of reporting towns are mostly different in each year.
They gradually increase in later years. During the years
1982 to 1988 the vital registration system covered 245
towns. (CB0, 1968) Among them, some of the towns
rendered births only.

When the new system was initially implemented it had
been planned to expand stage by stage starting from the
big municipal towns to towns and gradually to reach the
rural areas and cover the whole country in 10 year time.

The political changes and the limited resources had with held



the progress especially between 1973 and 19769. The system
now covers 20 per cent of the total population. In faet,
this coverage is 90 per cent of the urban population. There
are some test area of the rural area and it 1is hard to

determine the exact coverage of the rural area.

According to the 1962 to 1988 Vital Statistics Reports,
the coverage of total urban population and the number of
towns were varied from year to year. The coverage area for
urban area is very low per cent in 1962 to 1967. However,
in 1968 to 1988, the coverage of the urban population 1is
more than 80 per cent to 90 per cent. Thus, in this thesis,
the fertility data for urban area are analysed from 1968 to

1988 .

In the Vital Statistics Reports from 1968 to 1988, the
number of reported towns are varied from year to year. The
reported towns included in the successive reports are not
the same. So in order to make a reasonable analysis, only
125 common towns are analysed in this thesis. The collected
towns for 1966 to 1988 by states and divisions are shown in

Appendix Table (1) .

Although 8 towns were studied in Kachin State between
1968 to 1988, the number of reported towns are varied from
year to year. Therefore, only 4 common towns for Kachin

State are used in this thesis.

In Kayah State, Demawsoe, Parusoe and
Phagzung were collected only 3 to 5 years. But, for Loikaw
live births data collected from 1968 to 1988 so it can be

used in this thesis.



Similarly, in Karen State, Kawkareik, Kya-in-seikkyi,

Pa-an and Thandaung 1live births data are used 1in this

thesis.
In Chin State , there has 9 towns live-births data were
collected between 1968 to 1988. But, among th¢se towns,

Kanpetlat, Tunzan and Htantalang could not be collected in
the successive years. Therefore, the six towns are used in

this thesis.

Although the 13 towns were collected between 1968 to
1988 in Mon State, 9 towns could not be collected in the
successive vyear. So, the remaining 4towns are compiled in

this thesis.

In Rakhine State, kys:kpyu, Sittwe, Myohaung, Kyauktaw,
Maungdaw and Thandwe were collected since 1968.. It 1is
gradually extended to the other towns and by the end of
1988, 20 towns can be collected. But, only above six towns
can be compiled during the successive years and they are

used in this thesis.

Data of 24 towns can be collected in the Shan State.
But, only data of 8 towns are used in this thesis because

these can be collected in the successive 20 vyears.

There are 39 townships and 13 towns in Yangon Division.
The Yangon City which compiles 27 townships is taken as one
town only. Htauk Kyant is a town in the Mingaladon township
and is accordingly counted in the number of towns. However,
it 1is merged into Yangon City. Although the number of

reporting towns for births and deaths are 11 towns, Yangon
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City and the other 8 towns can be compiled in this thesis.
Htantabin and Hmawbi can not be collected in the successive
year.

In Mandalay Division, 22 towns are collected for
births and deaths data. But, only 14 towns are compiled 1in
this thesis because the other towns could not be collected
in the successive years.

The number of reported towns for births and deaths
data is 26 towns in Magway Division. But the only 11 towns
can be collected for this period. And Sagaing Division, it
can be compiled 11 towns for 20 successive years. In Bagc
Division, although the number of reporting towns for births
and deaths data was 24 towns, between 1968 and 1988, it can
be compiled 21 towns for successive 20 years.

In Ayeyarwaddy Division, the number of reported towns
for births and deaths data is 25 towns. But, the only 22
towns can be compiled for successive 20 years.

Similarly, although the number of reported towns for
births and deaths data is 6 towns for Tanintharyi Division,
5 towns can be used for successive 20 years.

Therefore, the total number of towns for urban area is

125 towns were used in this thesis.



CHAPTER 1II

INTER - DEPENDENCE STRUCTURE OF FERTILITY DATA

2.1 Introduction

A time series 1is a set of observations generated
sequentially in time. If the set is continucus, the time
series 1is said to be continuous. If the set is discrete,
the time series is said to be discrete. In this thesis it
has considered only discrete time series where observations

are made at fixed intervals.

A statistical phenomenon that involves in time
according to probabilistic law 1s <called a stochastic

process.

From a theoretical point of view, an important step in
the analysis of the time series data is to fit suitable
models for the underlying stochastic process. Therefore,
live-births and population data need to fit a suitable model
for the underlying stochastic process. In such situations
the analysis of the autocovariance function or
autocorrelation function and the power spectrum may mainly

provide to the choice of a suitable model.

In fitting a suitable model, it is needed to present
the following four stages. The first stage is "selection
the type of model" and the second is "identification of the
model parameters". The third stage is "estimation of the

model parameters" and the last is "diagnostic checking of

of
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the model". In each of these stages the autocovariance
function (acvf) and autocorrelation function (acf) play as a

major role.

Most of the demographic time series have been found to
be represented by a low order autoregressive process oOr a
mixed autoregressive moving average process. In
determination of the type of the model, the order of such
model and in estimation and diagnostic checking of & chosen
model, the autocorrelation function and the partial

autocorrelation function are needed.

But, 1n practice, only a finite number of observation
is available and the theoretical autocorrelation function

and the partial autocorrelation function have to be

estimated from the observations. There are a number of
estimations for autocorrelation Function and the
computatiocnal method are discussed in this chapter. Some

sampling properties of the sample autocorrelation function
and the partial autocorrelation function are also discussed.
The sample autocorrelation function and the ©partial
autocorrelation functions are computed for the observed
series, standardized series, first differencing series and

log-transformed series.

2.2 Sample Autocorrelation and Their Properties

An appropriate model can be defined by examining the
sample autocorrelation coefficients. X, is the observation

into a stationary series. Stationarity implies that the
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autocovariance of observations with fixed intervals are

constant through time.

The autocovariance coefficient y,, at lag k, measures

the covariance between two values X, and X.,, a distance k
apart. The plot of vy, versus the lag k 1is called the

autocovariance function {y,} of the process.

Y = CovXe Xex]l = E| [X-E(X) ] [Xeax-E(Xed 1] -

Similarly, the plot of the autocorrelation coefficient

px as a function of lag k, is called the autocorrelation

function {py} of the process. Since Pr=P-x the
autocorrelation is necessarily symmetric about zero. 1In the
past, the autocorrelation function has been called the
correlogram.

pl\-:y_k ’ k = 1121-

Yo

where

Yo = VIX.] = E[X.-E(X.)]°.

The autocorrelation 1s the dimensionless measurement
and it lies between -1 and +1. It is used to measure the
degree of linear dependence among of the value of a time

series that are of a certain time lag apart.

In practice, It hag finite number series X,,X,,X;,..,X%;
of T observations, from which it can only obtain estimates

of the autocorrelations.
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The estimated autocorrelation coefficients are equal to

T
- |
where X =— th
e
=1
An indication of the number of AR and MA parameters can
be obtained from pattern of the autocorrelation
coefficients. MA process characterized by the fact that the

autocorrelation functions cut off after the 1lag that

corresponds to the order of the process(hence ¥,=0 for k>qg),
whereas the autocorrelation function of AR process decays
exponentially. The choice of the model cannot always be
determined from the pattern of the sample autocorrelations.
Therefore, after the coefficients of the chosen model are
estimated, it 1is important to check the adequacy of the
model by examining the autocorrelation pattern of the

residuals as well as by fitting more elaborate model.

The obtaining of sample estimates of the
autocorrelation function is non-structural approaches,
analogous to the representation of an empirical distribution

function by a histogram.

Parametric time series models are not necessarily
associated with a sample autocorrelation function. Working
with either of these non-structural methods, the estimation
of many lag-corrrelation is involved. But a parametric model

containing only one or two parameters could represent the



14

data. Each correlation is a parameter to be estimated. So
that these non-structural approacnes might be very prodigal
with parameters, when the model could be parsimonious.
Initially, we do not know what type of model may be
appropriate. These non-structural approaches 1is necessary
to 1identify the type of the model. The choice of the
autocorrelation function depends upon the nature of the

models. [Box-Jenkin, 1976]

2.3 Partial Autocorrelation Function

The partial autocorrelation Function or partial
correlogram 1is another way of representing the dependence
structure of a series or of a given model. It is useful for
identification of the type and order of the model when
investigating a given sample time series. In characteristic
behaviour of autocorrelations, partial autocorrelations for
the three classes of processes, autoregressive process,
moving average process and the mixed autoregressive moving

average process 1s as shown in the following table.

The autocorrelation p; measures the correlation of

terms of the series separated by j terms or j lags apart.
The partial autocorrelation ¢, measures the linear

dependence between p; and p;., for j<k or the ¢,, measures the
correlation of the terms of the series k 1lag apart,

irrespective of the other terms of the series. The plot of
¢yx against the lag value k, k=1,2... is called thetpartial

)
correlogram and a set of partial autocorrelations Prex -

k=1,2,... is known as partial autocorrelation functio:.



e
Table (2.1)
CHARACTERISTIC BEHAVIOUR OF ACF, PACF
OF AR, MA AND ARMA PROCESSES

Class of Autocorrelations Partial

process Autocorrelations

AR (p) Infinite (damped exponentials |Finite.
and/or damped sine waves.) Spikes at lag h§
e; = ¢e,., + + bye5 5 through p, then cut

off.

MA (q) Finite. Infinite (dominated by
Spikes at lag 1 through g, | damped exponentials
then cut off. and/or damped sine

waves. )
Tail off.

ARMA (p,q) | Infinite (damped exponentials |Infinite(dominated by
and/or damped sine waves | damped exponentials
after first g-p lags.) and/or damped sine
Irregular pattern at lag 1 |waves after first g-p
through q, than tail off|lags.)
according to Tail off.

P = 0Py + + §pP5-p
Remarks: ¢; is the jth autoregressive parameter and

p; is the 3 autocorrelation coefficient .

Since the partial autocorrelations are cut off after

the first

p values in AR(p) process,

determine the order of AR process.

¢ can be used to
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To compute the partial autocorrelation estimates, let

Y; be the jth sample autocorrelation and ¢;,; be the jCh

coefficient (parameter) in the i*® order AR process. Then,

by solving Yule-Walker equations (for k" order AR process,

K=l .2 6504
Pr = Oy + O Py + + Ok Px-1
P2 = Oy P + gy + ...+ Oy Pk
Prx = O1x Px-2 + Qo Px.2 + Opx
for k=1,2,3,..., wusing Y 1in place of p,, {ékk},
k=1, 2,... can be obtained. [Box-Jenkin, 1976]

On the other hand, the recursive formulae, due to

Durbin {Box-Jenkin, 1976], are

Ok+1j = Ok - Okalk+l Okk—j+1 7 F=1,2,....k
and
g
Yiet= 2 OkjTk+1-j
q)k'i'l.k-f-]: k ’k=1’2’
L= 2, 017 ;
j=1
By solving these equations the set of partial
autocorrelation estimates {ékk},k=1,2,..can be obtained.

In these equations ¢,, is set to be r,.

On the assumption that the process is autoregressive of
order p, the estimated partial autocorrelations of order p+1
and higher are not significantly different from zero and

they are approximately independently distributed.



Also, if n is the number of observations used in fitting

the autoregressive process of order p, then

- 1
V(b )= — ; k= p+l, p+2,
n
Thus, the .standard error of the partial autocorrelation

estimate Oy is

- 1
SE(bkk )= —= ; k= p+l, p+2,

Vn

Thus, 1if ékk lies between the interval (‘L%93;4+L%?35)

for k2p+1, it can be assumed that the given series obey an

autoregressive scheme with order p.

2.4 Inter -~  Dependence Structure of Live-Births

The 1live-births records are available for 21 years
(1968 to 1988) for Myanmar. Hence, there arxre 21 yearly
records and the sample autocorrelations up to lag 20 are

computed by using formula
T - -
(X = XXX 4k = X)
=3 k=12...20
Z(Xr_ff
t

These sample autocorrelations 7Yy, and the partial

autocorrelation ékk are presented in Table (2.1a) and
Table (2.1b). The partial autocorrelations are computed by
the recursive method. The correlogram, the figures of ¥,

and ¢yx against the lag value k for k=l,2,...,20 are shown

in figure (2.1a) and (2.1b).
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From table (2.l1a) and the figure (2.l1la), it can be seen
that the lag one (k=1) correlation is highest and the sample

autocorrelations decline up tc lag (10).The confidence

interval is (-1-97 = - 04277, +1'97 = + 0.4277) and the
<21 Jf21

sample autocorrelations of lag (1) and lag(2) are out of the
confidence interval. Since the sample autocorrelations
function is assumed to be tail off, the live-births series

obey autocorrelations scheme.

When the partial autocorrelations are examined, it can

be seen that the partial correlations are cut off after lag

1. Hence, the AR (1) process can be used to represent the
given series appropriately. The complement of coefficient
of determination (1—Ri),k=1,2,...,20 show the same fact

that the series obey AR (1)scheme series it does not change

significantly from lag(l) to 1lag(2). The velues (1-R2),
k=1,2,...,20 are computed by using the formula,
k ~
(1-R%) = JJa-6f) k =1, 2, ...,20 and it is
i=1

the complement of the coefficient of determination when the

underlying process is AR (k).
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Table (2.1la) .
Sample Autocorrelations for Live-Births of Urban Myanmar

LLag Corr exr. -1 ~-,.7% =~-.,5 -.25 0 » B D 15 1
e i e R e R e e =

1 .797 .218 d kokkokokokk  kokokokokokok

2 .611 .329 ************.

3 .393 .379 % %k d ok kk ok ok

4 «189 » 3 98 * % X

5 « 919 402 *

f ~,125 .402 * %k &

T =.223 .404 * kK %k

B =,319 .410 Tk ok

9 = .347 .422 * de ok ok ok kok

il =375 «335 * & ok ko ko

il - ,347 .450 ko ok ok ok

12 -.241 .463 * ok kK

13 -.142 .469 * ok ok

14 -.064 skt T *

15 -~-.0386 .471 *J

16 ~.GLB .47 J

17 =;0861 471 * |

18 =.106 .472 *

12 =.08B3 .473 *
Plot Symbols: Autocorrelations * Two Standard Error Limits
I"otal cases: 21 Computable first lags: 20

Table(2.1Db)
Sample Partial Autocorrelations for Live-Births of Urban Myanmar
Pr-Aut- Stand.

~ag Corr. Err. -1 -.75 -.5 -.25 0 2l 5 =75 1(1-R.*)
il Sl il AR o e R ey
1 .797 .218 ********‘******* 0_364
2 -.069 .218 * 0.358
3 -.199 .218 * % % ok 0.343
4 -.125 218 * * 0.337
5 -.064 .218 * 0.336
6 -.092 .218 * & 0.333
7 -.043 2l B * 0.332
8 -.149 .218 ***J 0.325
9 ot 6 .218 J 0.325
10 -.108 .218 **i 0.321
1.1 .012 o 2o LB 0.321
‘12 .158 .218 | o 0.313
13 -.019  .218 A 0.313
14 -.094 .218 **i 0.310
2.5 -.129 + 218 * & % 0.305
a6 -.044 .218 *I 0.304
37 -.128 .218 * % % 0.299
18 -.147 .218 * %k * 0.293
s .229 .218 | Rk k 0.278
:llot Symbols: Autocorrelations * Two Standard Error Limits

‘otal cases: 21 Computable first lags: 20
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Figure (2.1a)

Sample Autocorrelations for live-Births of Urban Myanmar
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Figure (2.1b)

Sample Partial Autocorrelations for Live-Births of Urban Myanmar
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2.5 Inter. ... Dependence Structure of Mid-year
Estimated Population
The sample autocorrelations of 1lag(l) to (19) are
presented in the Table (2.2a). It can be seen that the lag
one(k = 1) correlation is the highest and the sample

autocorrelations are gradually decline up to fourteen(14).
The sample autocorrelations of lag(l) to (4) are out of the
confidence intervals(-0.4277,+0.4277)sothat the sample

autocorrelations function can be assumed to be tail off.

The sample and partial correlograms are presented in
figure (2.2a) and (2.2b). When the partial correlations are
examined, the lag(l) is out of the confidence intervals and
the partial autocorrelations function cut off after lag(l).
The complement of the coefficient of determination
(l—Ri),k=l,2,...,2O are not significantly different from

each other. So it obey AR (1) scheme.



Table(2.2a)
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Sample Autocorrelations for Mid-Year Estimated Population

.ag Corr
1 « 857
- .722
3 979
4 w3l
5 96
6 « =25
7 . 058
8 -.044
g ~-.136

10 -.222

11 ~=.2%0

12 -.343

el =383

14 -.413

15 -.,394

16 -.405

17 ~,366

18 -.302

19 “'.219

1ot Symbols:

otal cases:

¢

BT

NUOUNTOTUNTUTE B B D DD D DD WIN
ONdOAPRWHFOWODOIIIJIODO R
PWNhodkwPdrAAFOVOOUIONNWWD

21

=1

€, 0 B =25

0

P D + 75 :

e e e e e T Tl S

*

* % %k

* %k %k %
%k Kk ok ok k

* %k k ok k ok k
% ke ok %k ok ok ok ok
* %k %k k %k %k %k %k
% %k %k Kk ok ok ok &
* %k k ok ok ok k%
* %k Kk ok Kk ok Kk
* k k k k Kk

* %k %k ok

Autocorrelations *

Computable first lags:

Table (2.2b)

kkkkkkkkhk Khkhkkkhkkhkkik
dokok ok ok ok ok ok ok k ok ok ok ok

LE S S S S EEEER]

* d ok ok k ok Kk ok Kk

%* %k %k %k Kk %k

* k k %k

*

Two Standard Error Limits

20

Sample Partial Autocorrelations for Mid-Year Estimated Population

ag Corr
1 .857
2 -.046
3 -.111
4 -.108
S -.054
6 .032
7 -.235
8 o Q1.3
S -.068
10 -.082
11 --058
12 ‘.081
y 3 -.013
4 -.109
'5 .102
16 -.1859
~"7 .102
8 .056
- . 050
ot Symbols:
ttal cases:

Eryr.

(NINTSTSTSIN
HH e
0 00 ™ M ™

AVENSIIN TSI ST ST ST STNTSTS TSI

PEERRP PR R e
00 G 0O 00 00 O GO 0O 00 OO GO 00

\9]
=

-l =.95 =~,5 ~-,258

0

i 5B RS 3

W i S s e i S e i o o e e e s g

*
* &
* %

*

* %k % % %k

Autocorrelations *

kkkkkkdkk hkkhkokkhk

* %k
*
|

] Two Standard Error Limi
Computable first lags: SRS

20
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Figure (2.2a)

Sample Autocorrelations for Mid-Year Estimated Population
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Figure (2.2b)

Sample Partial Autocorrelations for Mid-Year Estimated Population
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2.6 Inter — Dependence Structure of Various

Transformed Series

In the analysis of time series data, analysis will be
carried out on the original series if it satisfies the
assumptions needed to use a certain method of analysis or on
the transformed series, the transformation being carried out
so that the transformed series will satisfy those

assumptions.

There are various ways of removing *“he seasonal
component and some otlier systematic components, such as
trend, oscillatory component, etc as well as the high

fluctuations in the series.

The following transformations are carried out so that
the transformed series no longer have the seasonal component

and/or the high fluctuations.
(a) Differencing

When the given series has a trend component and/or high
linear dependence Dbetween the successive values, the
differencing is attempted to eliminate these effects. The
differencing can be applied more than once if it is
necessary and the seasonal diffencing can be applied to the
seasonal time series so that the seasonal variation will be

eliminated. Let Y; be the differenced observation during i®

year and also denote A as the operator of y“h difference

which is applied to the s*B period. Then the successive

difference (A} )is
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Y, = A] = X, -%X; ; i=1, 2, ..., 21

The successive differrencing can also be applied

together and more than once.
(b) Logarithmic Transformation

Logarithmic are used to stablize the variance if the
standard deviation in the original scale varies directly as
the mean or 1f the coefficient of variation 1is ‘constant
[Sendecor-Cohran, 1980]. Similarly by using 1logarithmic
transformation, high fluctuations are reduced and some
skewed distributions become symmetric. If the observed
series seem to be log-normally distributed, the natural

logarithm of the observe series is normally distributed.

Let Y, be the log-transformed data during the g year,

then

Y. =ln Xy = log, X; , 1 =1, 2, ..., 21

i

The logarithmic transformations are widely used in the

analysis of population data.
(c) Standardization

The standardization is attempted to get zero mean and
unit standard deviation. The standardization procedure can
remove the seasonal variation to a certain extent, but the
linear dependence between the successive values are still

high.
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Let X, and Y, be the observed and the standardized data

for t”'year. Then

Xt‘—i .
e = —; Fom Ry B ing B
Sy

n
where )(=——§:Xt, the mean of live-births or population.
n
t=1

LS (X, - X)?

t=1

and S, = ]
n_

= the standard deviation of live-births or

population series.

In the yearly fertility and population data series of
the wurban area 1in the selected towns, there 1is a high
correlation between the successive values. Thus, the
following transformations are attempted to eliminate these

effects.
(1) First difference
(2) Logarithmic transformation
(3)Standardization

For each of the transformed series, 20 sample

autocorrelations vy,, partial autocorrelations ékk and the
values of (1-Rﬂ),k=1,2,...,20 are computed to study the

internal dependence structure of these series.

The sample auto and partial correlations of lag k can

describe the dependence structure of the values which are k

?



lags apart. The wvalues (1—Rﬂ), k=1,2,...,20 are computed

by using the formula.

k
U——Ri)=rl(l—¢ﬁk)k=h2p.20 and it is the complement of

i=1
the coefficient of determination when the underlying process

is AR (k).

2.6.1 Inter—- Dependence Structure of First Difference

Series for Live-Births of yUrban Myanmar

The linear dependence between the successive values for
the live-births data are high. Thus the first differencing
is applied. The sample and partial autocorrelations are

presented in Table (2.3a) and (2.3b).

The sample autocorrelations of lag (1) to lag(3) are

high and the confidence interval is (-0.4383,+0.4383). So
all of them lie between the confidence intervals. By seeing
the figure (2.3a), the sample correlation function 1is

assumed to be tail off, since the sample autocorrelations
are gradually discreased except for some lag values. The
first difference series of live-births can be represented by

an autoregressive process.

The correlograms of 7yi and ‘f)kk are described in the
Table (2.3a) and (2.3Db). The partial autocorrelations of
lag (1) and lag (2) are high and the (1-R1),k=1,2,...,19
are not significantly different from 1lag(l) and lag(2).

Therefore the series obeys AR(1l) scheme.
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Table(2.3a)

Sample Autocorrelations for First Difference Series of Live-Births

Corxr.

L
= QL
CQwONaUPLWNEH

[
~
0

=
w

LI I | |

COOHHNONHFHOKFRHFOKN

ONNWHNUNIIENOAWNDWLN

NWUIAORJdFININNIOE

=

~
QO
LN o))
N

18 -~.

Plot Symbols:
Total cases:

Err.

BNNNNDNDNDNDNNNNNDNDNDN NN
VOUWVVYVWOOIJAOONILIUTEWN
WWWNNOAIJUNTWWIR DO H D

[\
=

-1 -.75 =-.5 -.25 0 .25 .5 .75 1
i S i e il ittt HEP RS
%* %k %k %k
* %k %k % %
* %k * %k
*
* & %
***[
* %
* % k %k k
*
%* % % %
* %
* % %
*
*x |
L
*
*
Autocorrelations * Two Standard Error Li

Computable first lags after differencing:

Table (2.3Db)

Sample Partial Autocorrelations for First Difference

.Lag Corr.
& 179

2 .247

2 .126

4 -.146

5 2l O

6 -.138

T .208

8 .027

8 =,332
10 .038
i ) - &b 12
12 v Wk
e « D23
14 -.019
PR -.057
16 091
17 51
18 -.168

='lot Symbols:

T'otal cases:

Err.

.224
.224
.224
.224
.224
.224
.224
.224
.224
.224
.224
.224
.224
.224
.224
.224
.224
.224

21

Series of Live-Births

-1 -.75 -.5 -.25 0 .25 .5 .75 1
e il R . " IR R R R PR
* % %k % O
* k k %k k 0
* k %k 0
* % * 0.
* %k ok ok 0-
* % % 0.
* % %k % O
* 0.
* %k ok Kk %k %k ok 0
* 0.
* *
) ‘5
* % | i
| o
*x | O.
| % % 0.
*i . 0
***| 0.
Autocorrelations * Two Standard Error Li

Computable first lags after differencing:
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Figure (2.3a)

Sample Autocorrelations for First Difference Serics of Live-Births
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Figure (2.3b)
Sample Partial Autocorrelations for First Difterence Series

of Live-Birth
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2.8,2 Inter - Dependence Structure of First Difference

Series for Mid-Year Estimated Population

At the Table (2.4a) and Table (2.4b), the sample
autocorrelations and the partial autocorrelations are
described and their correlograms are also presented in

Figures (2.4a) and (2.4b) respectively.

From Table (2.4a), the autocorrelation for 1lag(l) is
out of 95 percent confidence limit of a random series, i.e
(-0.4383, +0.4383). Since these values are gradually
decreasing from lag (1) through lag (6) and can be assumed
to tail off, an AR process may be taken as the underlying

process.

After studying the sample partial autocorrelation
function , it 1s apparent that the underlying process can be
taken as AR(1). Since it cut off after 1lag(l) and the
partial autocorrelation for lag(l) is only out of the
confidence interval. The same result is obtained when the
complement of the coefficient of the determination is 0.62
in lag(l), 0.58 in lag(2) and 0.56 in lag(3). Thus, the
series obey AR(1l) scheme and we have to use AR(1) process
as the underlying process of the first difference series

for mid-year estimated population.
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Table(2.4a)

Sample Autocorrelations for First Difference

Lag Corr
1 -.616
2 227
3 071
4 -.166
5 vded @
6 -.104
7 i ey
8 -.117
9 « 093

10 .079
11 =~.002
12 .008
13 .032
14 +0032
15 .006
16 e 05
17 -.002
18 .005

Plot Symbols:
Total cases:

Series of Mid-Year Estimated Population

Table(2.4Db)

Sample Partial Autocorrelations for First Difference

Lag Corr.
1l -.616

2 -.245

3 v Bl

4 . 023

5 ~.013

6 -.089

7 -.086

8 -.271

g -.143
10 -.062
11 -~.0858
12 -.150
13 =,081
14 .014
15 =001
16 -.082
17 -.084
18 - A bk

Plot Symbols:

‘Total cases:

Err. -1 -.75 -.5 -.25 0 .25 .5 .75 1 (1-R

e et el R I et SR e
. 224 deok ok kok ok ok ok ok ok k| 0.620
.224 % % ok ok 0.580
224 LR R 0.560
. 224 i 0.560
.224 ; * J.560
.224 5 Cokk 0.556
.224 ol Q.552
.224 W &k Wk 0.511
.224 . w i 2.501
.224 ; * 0.499
.224 ; * 0.497
.224 g i W 0.486
.224 . *L 0.485
.224 . 1 0.458
.224 . o 0.458
. 224 : ** 0.455
.224 : * 0.452
224 : A 0.447

Autocorrelations * Two Standard Error Limit
21 Computable first lags after differencing: 1

Series of Mid-Year Estimated Population

BEY. =k =,78 «,8 =.,285 0 «BF 5 . 49 L
R it Tt e i ittt il o

.224 kkk hkkkkkkk |

. 297 * k kK ok

.305 |+

05 * ok ok

- 210 e s

3L * %

-315 4

4D * % |

. | % %

o A * %

.320 &

w320 *

380 i*

.320

»320 *

w it ) *

bl *

i S O *
Autocorr:lations * Two Standard Error Limits

21 Computable first lags after differencing: 19
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Figure (2.4a)
Sample Autocorrelations for First Difference Scries

of Mid-Year Estimated Population
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Figure (2.4b)
Sample Partial Autocorrelations for First Difference Series
of Mid-Year Estimated Population
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2.6,3 Inter - Dependence Structure of Log-Transformed
Series for Live-Births of Urban Myanmar
The sample autocorrelations and the partial

autocorrelations of log-transformed series for 1live-births

for k=1,2,.ﬂ.,20 are presented in Table (2.5a) and (2.5b).

From Table (2.5a), the sample autocorrelation for
lag(l) 1is highest and it can be seen that the sample
autocorrelations are gradually decreasing and the
autocorrelation function can be assumed to tail off. The
correlations for lag(l) and lag(2) are out of the confidence
limits. Therefore, this process may be autoregressive

process.

When the partial autocorrelations are studied, the
partial autocorrelation for lag(l) is out of tle confidence
limits (-0.4277,+0.4277) and it cuts off after lag(l). The
complement of the coefficient of determination is 0.355 in
lag(l) and 0.352 in lag(2). Thus we have to use AR(1)
process as the underlying process of log-transformed series
for live-births. The sampie correlogram and the partial

correlogram are also presented in Figures (2.5a) and(2.5b).



Table (2.5a)
Sample Autocorrelations for Log-Transfformed Series of Live-Births

X =,0h =,5 =,25 0 25 i - 4
R i e i R et et BT
********_*******
************.
d ok d ook ok ok Kk
* %k ok k
*
* % %
* % % %k %

% %k % ok ok ok ok
* Kk ok ok ok ok %k
% %k ok ok ok ok ok
* % %k ¥k % ¥k &
* %k ok k&

* %k %

*

*

*
* %k
%

Auto- Stand.
Lag Corr. Bxx.
8 .803 - el B
2 .614 s o )
3 o 1-4 8 .381
4 .181 .3939
= . 005 403
6 -.141 .403
7 =.,2386 .406
8 =-.330 .412
g ~.35% .424
i0 =~.381 .438
11 -.350 .454
id =.235 .467
13 =.132 .472
14 -.052 .474
15 =-.025 .474
i -.009 .474
17 -.043 .474
18 -.098 .475
19 = 0857 .475
Plot Symbols:

Total cases:

21

Autocorrelations *

|
*
|

Two Standard Error Limits

Computable first lags:

Table(2.5b)

20

Sample Partial Autocorrelations for Log-Transfformed Series

of Live-Births

Pr-Aut- Stand.
Lag ~Corr. Err.
1 .803 218
2 =-.085 ; Bd&
3 -.212 . 218
4 -.131 + 238
S -.064 218
6 -.085 .218
7 -.037 .218
8 «,1587 « 218
9 .009 .218
10 -.108 218
11 .016 2l8
12 .176 .218
13 -.030 .218
14 -.113 218
15 -.136 s 218
16 -.038 s &L18
17 -.115 v ed B
18 -.137 .218
ey 230 « oneks

Plot Symbols:
Total cases:

21

“«k =748 =B

-y D 0

295 .5 79

s

st At LR T LR IR R ST Ny Sy

* %
* %k % %
% % %

* k ok

Autocorrelations =*

Computable first lags:

Pk ke hkkkhkx*

I*****

=k =folefollafslolsllealolelclofalelalel o)

(l'sz)
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« 330
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w3l 7
Nca g
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+ 216
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. 267
« 00
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Two Standard Error Limits
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Figure (2.5a)

Sample Autocorrelations for Log-transformed Series of Live-Births
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Figure (2.5b)

Sample Partial Autocorrelations for log-transformed Series of Live-Birth
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2.6.4 Inter:— Dependence Structure of Log-Transformed

Series for Mid-Year Estimated Population

At the Table (2.6a) and Table (2.6b)the sample
autocorrelations and the ©partial autocorrelations are

described.

In this Table (2.6a), the sample autocorrelation for
lag(1l), 0.855 is the highest and it gradually declines up to
lag(14) . Therefore, the sample autocorrelation function
can be assumed to tail off and the lag(l) to the lag(3) are
out of the $5 percent confidence interval (-0.4277,+0.4277).

Hence, the process may be taken as an AR process.

The figure of y, and &kk for k=1,2,...,20 are also
presented in Figure (2.6a) and (2.6b). When the partial
autocorrelations are examined, the 1lag one value 1is

significantly out of the 95 percent limits and it cuts off
after lag(l). Hence, underlying process can be an AR(1)
process.The complement of determination (1-R%),k=1,2,...,20
is 0.268 in lag(l) and 0.267 in lag(2). Thus, we have to
use the AR(1l) process as underlying process of log

transformed series for mid-year estimated population.



Table(2.6a)

Sample Autocorrelations for Log-Transformed

Lag Corr
1 855
2 718
3 - 572
4 .420
5 .284
6 -85
7 .046
8 -.050
2 =.,138

10 -.220
11 -.286
12 -.336
Ld =.375
14 -.405
15 ~,387
16 ~,398
17 -.361
18 =-.297
19 =.215
Plot Symbols:

Total cases:

Sample Partial Autocorrelations for Log-Transformed

Lag Corr
1 «B55
2 -.050
3 -.114
4 -.116
5 =-.047
6 .047
7 -.246
8 25
g =068

10 ~,076
1l =~.,059
12 =~-.088
13 -.005
i4 ~,117
15 «100
16 =-.193
37 v 208
18 - Q55
19 044

Plot Symbols:
Total cases:
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Table (2.6b)

Series of Mid-Year Estimated Population

Err.
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Series of Mid-Year Estimated Population
Err. -1 -.75 -.5 -.2%5 0 .25 .5 .75 1
i i S e
.218 kkkkkkkk dhkkkkkkhk
.343 * ok ok ko ok ok ok ok ok ok ok ok ok
.408 * ok ok ok ok ok ok ok ok ok Kk
.445 * Kk ok ok ok ok ok ok
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514 *okkkkokk ok
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267 * ok ok ok ok k
574 * ok k k
Autocorrelations * Two Standard Error Limits
21 Computable first lags: 20
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Figure (2.6a)

Sample Autocorrelations for Log-transformed Series

of Mid-Year Estimated Population
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Figure (2.6b)

Sample Partial Autocorrelations for Log-transformed Series

of Mid-Year Estimated Population
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2.6:5 Inter - Dependence Structure of Standardized

Series for Live-Births o Urban Myanmar

The sample auto and partial correlations together with
(1—Rﬂ),k=1,2,...,20 are computed to study the  internal
dependent structure of the standardized series. The wvalues

are presented in Table (2.7a) and (2.7b).

For standardized series, the lag(l) and lag(2) sample
autocorrelations are out of the 95 percent confidence limits
of a random series, 1i.e, -0.4277 and+0.4277. Since, the
values are gradually decreasing from lag(l) through lag(1l1l)
and can be assumed to tail off, an AR process may be taken

as the underlying process.

After studying the sample partial autocorrelation
function, it is apparent that the underlying process can be
taken as AR(1l) since it cuts off after lag(1l). The same
result is obtained when the complement of the coefficient of
determination 1is examined since the difference between
lag(1l) value and lag(2) value is quite small. 1Its value for

the lag(l) is 0.365 and for lag(2) is 0.364.



Lag Corr. Ery, =1 «,78 «.5 -,25 0 v e i &
L e e o e I e s

1 .797 .218 . l********_*******

2 .611 .329 . * ok ok odk ok ok ok ok ok ok ok ok

3 s 33 T ; Lawwxnwns

4 .189  .398 . ]****

5 .019 .402 : *

6 ~-.125 .402 . * ko |

7 =,.223 .404 : * ok ok

8 -.319 .410 " * ok k ok ok %

9 =.347 .422 " kkkkhkk

10 =~.,375 «3435 : kdokok ok ok ok

11 -.347 .450 ; LE e

12 -.241 .463 . kkdxx

13 =,142 .469 " * ok k

14 -.064 .471 4 *

15 -.036  .471 . * |

16 -.018 .471 4 *

17 -.051 .471 " * |

18 -.106 .472 3 * *

19 -.063 473 . * |
Plot Symbols: Autocorrelations * Two Standard Error Limits
Total cases: 21 Computable first lags: 20

Table(2.7a)

Sample Autocorrelations for Standardized Series of Live-Births

Auto- Stand.

Table (2.7b)
Sample Partial Autocorrelations for Standardized Series
of Live-Births

Pr-Aut- Stand.

ILag Corr. Err. -1 -.75 -.5 -.25 0 25 .5 « 25 1 (1-R.7)
i e s e e e S T
l .797 218 . ********_******i 0.364
2 -.069 218 g ¥ 0.358
3 -.199 .218 : *od ok 0.343
4 -.125 .218 ) * % 0.337
5 -.064 .218 . * 0.336
6 -.092 .218 " L U.336
7 -.043 .218 . * g.383
8 -.149 .218 ) * k| 0.332
9 .011 .218 . * 0.325
10 -.108 .218 2 * o | 0.321
11 2 .218 * 0.321
12 .158 .218 | * ok 0.313
13 -.019 .218 ) * 0.313
14 -.094 .218 : *x | 0.313
15 -.129 .218 ) * ok ok 0.305
16 -.044 .218 " * 0.304
17 -.128 .218 : * Kk 0.295
13 -.147 .218 . * % % 0.278
19 .229 .218 . * ok ok Kk 0.293
—lot Symbols: Autocorrelations * Two Standard Error Limits

—otal cases: 21 Computable first lags: 20
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Figure (2.7a)

Sample Autocorrelations for Standardized Series of

Live-Births of Urban Myanmar

1.0x

81
09
A
2
0.0¢
=24

-4

9 11 13 15 17 19

4 6 8 10 12 14 16 18

Lag Number

Figure (2.7b)

Sample Partial Autocorrelations for Standardized Series of

Live-Births of Urban Myanmar
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2.6.6 Inter - Dependence Structure of Standardized

Series for Mid-Year Estimated Population

The sample auto and the partial correlations together
with (l—Ri), are computed for lag(l) to(20) and presented
in Table (2.8a) and (2.8b). Sample correlogram and partial

correlogram are also presented in Figure (2.8a) and (2.8b)

The sample correlation for lag(l) is the highest and

the lag(l) to lag(4) are out of the 95 percent confidence

limits (-.4277, +.4277) of a random series. The lag one
sample autocorrelation is 0.857 and the sample
autocorrelations pattern can be assumed to tail off. Thus

an AR process may be taken to represent the series.

To determine the order of the process, the partial
autocorrelations and the complement of coefficient of
determination are used. The lag one sample partial
atuocorrelation is the only value which is significantly out
of the 95 percent limits of a random series and the AR(1)
process can be used to represent the series.

Similar result 1is also obtained by examining the
complement of the coefficient of determination
(1-Rﬂ),k=1,2,...,20. Its value for the lag(l) is 0.265 and
for lag(2) is 0.255.Therefore, the series obey AR(1l) scheme.

From the above results, the standardized series, the
logarithmic transformed series, the first difference series
and the original series are found to be the series, which
can be represented by an AR(1l) process properly. Thus, all
of the series will be used in the live-births and population

for selected towns in Urban Myanmar.



Table(2.8a)

Sample Autocorrelations for Standardized Series

Auto- Stand.
Lag Corr. Ery.
1 .857 .218
2 .722 .343
3 .579 .409
4 .431 .446
5 .296 .466
6 « 1 95 . 475
7 .056 .478
8 -.044 .479
9 =,136 .479
10 -.222 .481
11 =.280 .486
12 -.343 .494
13 =.383 . 505
14 -.413 v 1.9
15 -.394 .534
16 -.405 .548
17 -.366 .562
18 ~.302 1-F=
19 -,2189 a8l
Plot Symbols:

Total cases: 21

Sample Partial Autocorrelations for Standardized Series

Pr-Aut- Stand.
Lag Corr. Err.
1 . 857 .218
2 -.046 218
3 =~-.1l11 .218
& =,308 ol 8
5 =~-.054 .218
6 « 032 v A18
7 -.235 .218
8 + 013 . 218
9 -.068 .218
10 -.082 . &18
11 -.058 « @8
12 -.081 o od B
13 =-.013 .218
14 -.109 vad 8
15 + 102 .218
16 ~.189 s 2 18
17 . 1102 <218
18 . 056 . 218
19 .050 .218

Plot Symbols:

Jwtal cases: 21
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Table(2.8b)
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Figure (2.8a)

Sample Autocorrelations for Standardized Seies

of Mid-Year Estimated Population
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Sample Partial Autocorrelations for Standardized Series
of Mid-Year Estimated Population
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CHAPTER III

AUTOREGRESSIVE MODEL FITTING IN FERTILITY DATA

3.1 Introduction

From the theoretical point of view, it may be seemed
preferable to use behavioural models for calculating
predictions. After studying the autocorrelation and the
partial autocorrelation of fertility data in the previous
chapter, it 1is apparent that the series can be
represented by autoregressive (AR} model. This model
generates a new predictor variable by using the vy
variable lagged one or more periods.

The application of this model has been attractive in
fertility mainly because the autoregressive form has an
intuitive type of time dependence, i.e., the value of a
variable at the present time depends on the value at
previous time and the autoregressive models are the
simplest model to use.

In this chapter, the general discrete autoregressive
models presented with 1its properties, such as acvf,
partial acf and the spectrum. Then, the estimation of
parameters by using the method of moments and the maximum
likelihood method is described in detail.

The test associated with the model fitting and the

estimation of 1its parameters are also described in
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section (3.3). Then the autoregressive models are fitted

to the selected series.
3.2 Discrete Autoregressive Model and Its Properties

A stochastic model which can be extremely useful in
the representation of certain practically occurring
series 1s called autoregressive model. In this model, the
current value of the process 1is expressed as finite,
linear aggregate of previous vajues of the process and a

shock a,.

Let us denote the values of a process at equally

spaced times t, t-1, t-2, ... by X., Xt.3, Xe.2s, -+ s« Also
let Xy, Xy -3, ... be deviation from U : for example,
Xp=Xc-lt
Then
-it= ¢1 it"l -+ ¢2 it_z + » s W + ¢p it—p + at 3.2.1

If we define an autoregressive operator of order p by

$(B)=1-¢, B - ¢, B~... - ¢, B” BeB. 2

then the autoregressive model may be written economically

as,

The model contains p+2 unknown parameters W, ¢,, ¢,, ...,

o, c,° which in practice have to be estimated from the

data.

The white noise process a, 1is assumed ¢to be

independently and identically distributed random error

. * 2 .
term with mean zero and variance G,°. That is
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E(a,) = 0
E(at' at‘k) = 0 k#—' 0
= o,° k= 0

The most widely used AR models in fertility data are
only the lower order autoregressive models, especially of
order 1 and 2. [Ronald, JASA, Vol 69, p-608)

For p=1, the first order autoregressive process is

Ke= H= @ ey = L Y+ 8¢ - 3.2.4
Since X; depends only on the previous observations, it is

referred to as a Markov process and there are three

parameters (U, ¢ c,’)to be estimated.

Similarly, the AR(2) models is

Xem M= 0, Xpp - B) + 9o Xeon - U ) + & 3.2.8
and there are four parameters ( W, ©¢,, o,, Gaz ) to be
estimated. The AR{2) model 1is also known as Yule model.

The properties of the discrete general AR(p) model, AR(1)

and AR (2) models are discussed in term of the
autocovariance function, autocorrelation Finction,
partial autocorrelation function, the staﬁiouarity

condition to be met and the power spectrum in the

following subsections.

. P B Autocovariance and Autocorrelation Functions

The autocovariance function of the autoregressive

AR (p) process is found by multiplying throughout in

-~

to obtain
Bk %= O Xy Xt Xy Xt o Ry XZpt Ky &(3.2.6)
on taking expectdvalues in (3.2.6),

We obtain the different equation
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Y= O Yx-1+ $2 Y2+ - - -+ @ Yipt - - K>SO 3.2.7
E(X,.x a.) vanishes when k>0, since X._) can only involve
the shock a; up to time t-k, which are uncorrelated with
a,. On dividing Y by Y,, it <can be obtained the

autocorrelation function

Pr= 01 Proy + P2 Pra ¥ ot Gy P oo K20 < - 0

where Yo= ) Yo+ 02 Ya+ ...+ Oy Y +0,’ since ¥, =Y, and

Po=1
. Y5 , . ;
By replacing pj=— or Y = (f p; in this eq® gives
GX
0:-:2: 0, Pa sz + 0, P ze + -t ¢p Pp ze + Gaz
2 2
Gx (1-6)191 '¢2p2 - e ¢ppp) 0-a
2
o
ol = 2 3.2.9
1= 0 p1 = 63 P2 - ...— O pPp
equation (3.2.9) is the relation between o, and 0,°. The
eqd® (3.2.8) 1is known as Yule-Walker equation. This

equation 1is due to Yule (1927) and Walker (1931) and
commonly used for estimating the parameters of the AR(p)
model by the method of moment [Box-Jenkin, 1976]. The

other important use of this equation is for dertermining
the correlogram p, for a given set of parameters 0,,

j= 1, 2, ..., p. It is important to know the shape of p,
for a given model because it will serve for identifying
the order of the model.

The acvf and acf of the AR(1l) process is found as

where BX;= X;., which is the backward shift operator



Xy = a, (1-¢,B) "

|
M=
7
=
=
-.mh

o .
==§2¢{abd since Bla, = a.

o

Then X, is liner process }Ehﬁh—j which hy= ¢,’

j=0
The autocovariance function is

E(;{[ i[+k)

Tx

(0 o
j=0 J=0

a
= E( Y hjhj,gai_j+ C.P.T)
j=0

Il

x
2
o2 Y, hshjux
J=0

BUC h) = ¢1J

The autocovariance function is

(04
2 1. 1+k
Yi = o7 > 616
§=0

a
2.k 2j
ca¢’l 2¢'1J
j=0
7 X
_% %
2
I-67
and acf of the AR(1l) process becomes

o= Y= ok Kk=0,1,2,..
Yo

45

3.2.10

3.2.,11
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Using the Yule-Walker -equation, the autocorreliation
function satisfies the first-order difference equation

Pk = 0y Px.y ... k>0
which with p,= 1 and p, = p_,

Py = 0, Po

Py = O

P = O, P, = ‘312

Pu = O, k20
When ¢, is positive, the autocorrelation function decays
exponentially to zero and, ¢, is negative, it oscillates 1in
sign

The variance of the process is

2 7}
2 Ca Ca

- —_—_—_— -

1=01p) b=t

The acvf and acf of the AR(2) process is found as

X

equatior. (1- ¢,B- ¢,B°) = 0 . Then
(1- G,B) (1- G,B) = (1- ¢,B- ¢,B°)
] [ -1 =
s = 1-G,B) -(1-G;,B a
t B(G; - G) ( l) ( 2 ) t
= }i 1 F g? a,
£ G1-G;
i iG_]"*‘]_G%‘f‘l
= s
{=0 Gy -G .
Thus, it is a linear process with hy= L 2 ) The
G, -G,

acvf of the AR(2) process becomes



wn
[

L W (1-61) (1-63) (1-G, Gy)

The acf of the AR(2) process is

Px =

In this process, G;' and G;' are the roots of the
characteristic equation ¢(B) = 0. When the rocts are
real, the autocorrelation function consists of a mixture
of damped exponentials. It occurs when ¢, + 4¢, > 0. IFf
the roots are complex (¢,° + 4¢. < 0) the autocorrelation

function consists of a damped sine waves.

On the other hand, substituting p = 2 in Yuke-Walker

equation,
Px = &1 Px-1 + 02 px-2 (3.2.12)
and for k = 1, 2, ...
fy ™ ¢1 Po + b2 P1
p2 = 1 p1 + d2 po

P3 = d)l p2 + (1)2 P1 and etc.



52

Thus the acf can be obtained by solving (3.2.12)

recursively, beginning with the initial values p, = 1 and

¢y

- when ¢, and ¢, are given.
= ¢

Pl =

For AR(1l) model,

2

(o}
02=~———aT since p, = ¢,
(I-9;%)
Similarly, for AR(2) model
0_2 _ O'az(l i d‘z)
L+ 03) [ = ¢x)% = 6,7
¢ 61
sincep) = ] and p, = ¢, + Rt are obtained from two
I-¢s (1-¢2)
equations of (3.2.12).
3l 2 The Partial Autocorrelation Function

The partial autocorrelation function 1is useful to
decide the order of autoregressive process to fit to an
observed time series. It is described in terms of p non-

zero function of the autocorrelation.

To decide the order of autoregressive process to be
fitted to an observed time series is the same as deciding on

the number of independent variables to be included in a

h _ .
coefficient in

multiple regression. Denote by ¢,; .,the j°
an autoregressive process of order k, so that the partial
correlation is ¢, which is the iast coefficient of the K"

order AR process.
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From Yule-Walker equation, the ¢,; satisfy the set of

equations.
Py = by P-a F+ ow ot By Pijx « 1 =1, 2, PR S
which may be written as
[ 1 Pl P2 P-1 [ dx1 ] [e1]
| - - .
P1 P Pk-2 | dx2 | _|P2 T
[Pk-1 Pk-2 Pk-3- 1 Jléx] [Pk_
or
Peby = Px
solving these equations for k=1, 2, 3,..... successively,
we obtained ¢,, = p,
1 p
2
P1_ P2 _pP2-—P
¢22 = =
l pl, 1-py”
pp |
I py P
pl l p’)
$33 = E% VLT3 and so on
I p1 P2
pr I Py
p2 Py |
In general, for ¢, , the determinant in the numerator
has the same elements as that in the denominator, Lkut with

the last column replaced by [p;, P2 +.-.,P]".
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On the otherhand the partial autocorrelation function
can be obtained by solving Durbin's recursive formulae [Box-

Jenkin,1976] .

¢p+l,j o ¢p) - ¢p+1,p+1 ¢p,p-j.1 ’ J =1, 2, -0 P

p
Pt~ 2 Bpibosi-j

=

! 3.%2.14

P
1= D dpiPj
j=1

¢p+1,p+l =

with starting value ¢,, = p,

The estimated partial autocorrelation can be obtined by

substitution estimates Xy for the theoretical
autocorrelations.

ry = ¢ xa Ty, + b k2 Tjoot+...+ ¢k,k-1 Ly-k-1+t b wx -k J=1,2s 5 20K
and solving the resultant equations for k=1,2,.... . Under

the assumption that the process is autoregressive of order
p, the estimated partial autocorrelations of order p+1 and

higher are approximately independently distributed. [Box-

Jenkin, 1976]

Also if n is the number of observations used in fitting,

Var[&kk] ~ 1/n; k=p+1, p+2,...
Thus the standard error of the estimated partial

autocorrelation ¢, is

SEl¢y) = 1/¥n ; k=p+l, p+2,... (3.2.15)



55

The partial autocorrelation of AR(1l) process are

by =P = ¢,

and the partial autocorrelations of order higher than one

are, from(3.2.14),

¢22==E£;1ming(l
I=911p)
since Px = ¢1k = plk
similarly, b = 91 - P20y = py
pP3 = 11P2 —$20p
PO bk 11 L_g
I1=¢11p1 —922P2
since Ps = P’ s dups = p,’ and ¢, py = O

Generally, for the AR(1l) process,

Drx = 0, k = Z; 3, 4,....can be obtained by

calculating recursively.

For the AR(2) process, the partial autocorrelations are

obtained as,

by = Py
T ~%11P1 _ P2 -PL il
I=d11p 1-py”
and ¢,;, = ¢y, - b 9y,
_ P2 =P p1(1-p2)
= pl - ~ I = B
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e gy = B3 ~921P2 —¢22P1 _,

1=¢21p] —$22p2

by substituting p3= p17[2p2—pn2~p22]

I-py~

The expression for p,; can be obtained by solving the

Yule-Walker equation for p=2, i.e

Pk = &1 Px-y + P2 Pr-2 o k=1, 2, 3,...

1 — -
with ¢, = EﬂL_i?l and ¢, = P2 p;
1-p” I-py

It can be easily shown that ¢, = 0, k=3, 4, 5,... by

the same way. Therefore, for AR(2) process,

B
¢y = Py = e
p P2
” -
¢22 = _—'_; = ¢2
1= i

and Py = 0; k=3, 4, 5.«
Generally, it can be concluded that, for an AR(p)
process, the partial autocorrelation function dpx will be

ncnzero for k = 1, 2, 3, ....,p and zero for k = p+1, p+2, ..

In other words the partial autocorrelation function of a p*°

order autoregressive process has a cut off after lap p.
This can be used to determine the order of an AR process.

By computing the sample partial autocorrelation function of
the given series and 1if the value of dx 1is within the

interval (2/Vn, -2/¥n), after lag(m), the underlying process

can be taken as an AR(m).
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3.2.3 Stationary. - Conditions for Autoregressive Process

The set of adjustable parameters ¢, ¢, ¢, of an AR(p)

process
Xe = Xy +....4+b, Xy + 2,
(1-¢,B....¢,B,° 1 X, = a must satisfy certain

conditions for the process to be stationary.

The first order autoregressive process 1is

(1-¢,B) X, = a,

a .
~ =1
Xe = (1'¢’1B) ag = Z‘bilal—j
j=0
a .
Hence y(B) = (1-¢,B) " = §§¢{BJ
J=0
For stationarity, w(B) must converge for |E|S 1. So, the
parameter ¢,, of an AR(1l) process, must satisfy the

condition |¢1|< 1 to ensure stationarity. And the same way
the root of 1-¢,B = 0 must lie cutside the unit circle.
For the general AR (p) process
X, = ¢, (B) a,
$(B) = (1-G,B) {1-G.B) ... (1-GgB)
and expanding in partial fractions
P

K.
X.= ¢ (Bla, = ). ———a,
£1-G;B

If y(B) converge for |B|< 1, then the root G; must
satisfy the condition |G, | < 1 where i=1, 2,...,p.
Equivalently, the root of ¢(B) = 0 must lie outside the unit

circle. [Box-jenkin, 1976]
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3.2.4 The Spectrum of the AR(p) Process

The power spectrum of the AR(p) process is also useful
as acvf and acf to analyze a stationary stochastic process.
It shows how the variance of the stochastic process varies
with frequency. It is the Fourier transform of the acvf and
hence, acvf and acf belongs to the time domain study where
as the power spectrum belongs to the frequency domain study
of the process. Since the spectrum is the Fourier transform
of the acvf of the process, one nhalf of the spectrum of the

"process can be oktained by substituting B = e ****  where

= °]
i=V-1 in the autocovariance generating function r(B)=}:rkBk
-0

[Box-Jenkin, 1976] The autocovariancee generating function

of a linear process 1is

r(B) = o, ¢ (B)o (f)

and the power spectrum of the linear process 1is

X{F] = Zo,. e e lte™™ ) (3.2.16)
= 20,7 9™ ) ; 0< £ < 1/2
2
2 -
= Oa ;. 0< f £ 1/2

For the AR(p) process

¢(B) = (1 - ¢,B - ¢,B" ...- ¢.B°)

and the power spectrum becomes



2

X(f) = 20,
1— ¢le—12nf _¢ze—14nf_m¢pe—-|27tpf
Fir the AR(1) process
$(B) = (1 - ¢,B)
2
2 -
X(f) = ik ;
'1 ¢e—i21:t"2
— VYl
5 2
= al ;02 £ £ 1/2

1+ ¢12 —-2¢1Cos2nf

Similarly, for AR(2) process

¢(B) = (1 - ¢,B - ¢,B%)

and its powerspectrum becomes,

5
28,

2

14012 + 042 =261 (1 - ¢ )Cos2nf — 24, Cosdnf

08 £ £ 1/2 (3.2:17)

(3.2.18)

; 0581 /2 (3.2.19)
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3.3 Estimation of the Parameters

After the model identification, the efficient estimates
of the parameters are needed. Thus the parameters are

needed to estimate in a model.

The identification process having lead to a tentative
formulation for the model, then it need to obtain efficient
estimates of the parameters. After the parameters have been
estimated, the fitted model will be subjected to diagonstic
checks and tests of goodness of fit. For testing of
goodness of fit to be relevant, it 1s necessary that
efficient use of the data should have been made in fitting
process. If this is not so, inadequacy of fit may simply
arise because of the inefficient fitting and not because the

form of the model is inadequate.

Therefore, the estimation of the parameters is
important in the fitting process. Among the estimation
methods for the estimation of the parameters of the

autogressive process, the method of moments and the maximum

likelihood methods are widely used.

The method of moment is the simplest method and 1is
based on the Yule-Walker equations. The moment estimates of
the autoregressive parameters are sometimes called as Yule-
Walker estimates. The maximum likelihood method is the most
power fyl and relevant method  when the underlying

assumptions are fulfilled.

Let the given set of data be X,, X,,...,X, where n is

the number of observations and also let the underlying
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h ;
process of X be the p"" order autoregressive process.

Denote p be means of X, o° be the variance of X and p; be

the lag "j" autocorrelation coefficient.

3:3:1 Method of Moments

The method of moments rests on the fact that the
moments of the sample and its parent population may have the
same properties. In this method, the population moments are
equated by their sample counterparts and the equations

obtained are solved to get the estimates.

The moment estimate of the population mean is

p=F==) X (3.3.1)

and the sample mean is used to estimate the population mean.
Similarly, the population variance or the variance of the

process is estimated by
&2 ==Y (% -%? (3.3.2)

but this estimator is a biased estimator and the commonly

used one is an unbiased estimator.

> (x -%)? (3.3.3)

To estimate the autoregressive coefficients, the sample

autocorrelations r, are substituted in place of the
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theoretical autocorrelation p, and &s are replaced in ¢ in

the Yule-Walker equations. Then

-~

Ty = 0., + 0.y, +...+¢prbp, Kal, 2, 32,5524 P

and by setting k =1, 2, ..., p a system of equations 1is

obtained as

r, = ¢, + ¢,r, + +¢prp1
Ly = ‘$’1r1 % &;2 + +‘$’prp-2
........................... (3.3.4)
r, = $1rp-1 + $2rp-2 + +$p
or §=:Ré, where r' = [r, 1., ¢ L5l
:' = [&1, ; ip] and
[ 1 I p ]
R = ry 1 Ip-2
| Tp-1 Tp-2 1 ;

By solving these equations simultaneously, the moment

estimates or the Yule-Walker estimates of the parameters are

cbtained easily as

. 2 . ’ .
The error variance o, 1s estimated from the relation

2 2 ‘
of © and o©.°, l1.e

P
8> = g° (1 - §:¢jpj)
J=1
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replacing éj in ¢; and ry in p;. In order to get an unbiased

estimate of error variance ([Salas, 1980],it is necessary to

multiply with n/(n-p), then &,° becomes,

, p

R n . R

5, = Gz(l—Zd)jrj) (3.3.5)
j=1

n-p

-~

For a given set of data fi and 6° are constant for

whatever the order of process, but &1, éz, T ép and 632
aare changed according ¢to the order of autoregression.
For example, the estimates of the parameters of AR(1)

model are obtained from equations (3.3.4) and (3.3.5) as

r, = ¢,

Q»
v

Il

Q»

and

n - -
= ——3&° (1- ¢,
n-

For AR(2) process, equation (3.3.5) becomes

ry = ¢,- ¢, r,

r, = ¢, r; - ¢,

A rl(l—rz) ~ 1'2—1‘]—
and §y = === 2= o

l—l'l
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- . l+‘ = -
or G, = 152 ‘?2 (1-65)° —¢12
11—2 l—¢2 -
Iy 7 2
replacing r, = ¢L and r, = ¢k +¢n
1-¢, 1-¢,
3:3.2 Maximum Likelihood method of Estimation
To use the maximum likelihood method o b o

estimation, it is important to know the exact distribution
of the wvariable under study. But in practice, it 1is
impossible to know the exact distribution and it needs to
make assumptions about the distribution. Since the

autoregressive process of order p can be written as

Xe = B o= ¢y (Xeoy -H) +¢o (Xc.o '“)*-'-"'d)p(xr.-p -W)+ A

or
We = Owey + Gowe, 4.4 ¢pwc-p + dg

where w, is the mean deviation of x, and p is estimated

by x 1if it is unknown.

Let us assume a, 1is independently and normally

. . . . B 3
distributed with mean zero and variance o, and hence w is
normally distributed random variable with mean zero.

Then, the joint probability density function of the

Wo'o= (W Wy, ...w, ) is
n
== 1 '
~ - 2 Wi M w
fE(w, /6,6, ) = (2no,”) 2[M| » exp—{—1—0=0
20,°
-0 S W, S ; Lt =1,2,.., DN (2.3.6)
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where ¢' = (¢, ¢,,...¢,) is the vector of autoregressive
parameters,
s 2 2 . .
6, = V(a,) = Ef(a,”) is the variance of random error
(] -‘ .o - . 3
term and &,° M_' is the variance-covariance matrix of.

The variance-covariance matrix of w,_, can be expressed
a2 =] . . .
asc,” M, since all the variances and covariances of w,

~ 2 .
can be expressed as the product of ¢, and autocovariances.

[E(w;w;) E(w;ws) . E(w;wp)]
. _1 » | E(waw)) E(wawsy) . E(waow,)
1.€ G, Mn = G,
LE(wpawy) E(wawy) o E(wpwy)]
Io 3| Tn-1
- To Tn-2
— O’a
.Tn-1 Th-2 - To |
where r1; = r; is the lag 3j autocovariance of AR (p)
processs. But actually r; = 0 for j 2 p. The matrix M, is

symmetric about both of its principal diagonals or a doubly

symmetric watrix(say).

Now,

f(ﬂnl /¢, 632 )=f(wp,1: wpozl---lwn/.\.!p, ¢f6a2 )f(_w...p /(bla-az)

where w, = (w, ,w,, ...w, )
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To get the conditional distribution of

the distribution

ﬂn_p' = (Wp.1 .Wn ) given (w, ,wy, ...wp),
of (ap.,,.., a,) can be used, i.e,
£ (ag,,, , a,) = (27ro-az) 2 exp- = Zat2
20,7 1=p+1
-0 £ 3 £ ; t =p+l,.., n (3.3.7)

normally distributed with

Since a, are independently and

zero mean and variance G,

For fixed w, ,{ap; .,8p2 +--485) and (wy,; ,Wg.o ,..,Wy,)
are related by the transformation.
Qpy1 = Wpa ¢'1wp % o8 - ¢pw1
ap+2 - wp+2 - ¢1wp+1 Saswen - ¢pw2
an, = W, - ¢1wn-1 e - ¢pwn-p
The Jacobian of the transformation is
oa,_
il ===
oW, _p
and |J| is obviously unity. Then,
_ﬂ 1 n
A 2 2 2
f(ﬂn-p/ﬂp,?: 0, )=(2nc,") 2 exp o Z(wt —¢lwt—l'“"¢pwt—p)
20,7 t=p+l
(3.3.8)

-0 £ w, £ w0 ;



Also, the distribution of w_ is

A 2 ’)_P ] XY. 'Mw
E(w, /$.6.° )= (2r0,%) 2|M,

2 w1 . ’ "
where o, M, " is the variance-covariance matrix of w

p
Thus
f(w, /6,6,° )= (2ncaz)2Mp2exp— (1 (3.3.9)
- 20,
where
S 2
S(d)) =EpIMp Wp ¥ Z (w, - ¢1 Weea- ¢p We p)
t=p+1
P P n N
= Z Z Wimij‘""j + Z (wt' ¢1 w:-1----“¢p W;-p) £{3.3.10)
i=1l j=1 t=p+1
where myy is the i*® row and jth column element of M,

Also M, = {my;} = G, {Yli-j]}-l -

F I'O I'] . rp_I-
I'l I'O 8 r -2
= Oaz p
| Tp-1 Tp-2 - To |
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From the equation (3.3.6) and (3.3.9), it can be seen

that IM.nl = IM.pI

Now, Let n = p+l. so that from equation(3.3.10)



P P
Wooa'Mpoy Woo = D0 D0 wimggwy + (W= 6y Woo oo G W)
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.M‘U
M=

2 2

_q)pwl wp+1+¢p¢p-1 Wiwp, + ¢p--l Wy ¢+
2

¢p-14’1 W3 Wp‘¢p-1wz +¢p-1wzwp+1 ..

2 2
¢p¢1w1wp + cbp-1¢1Wle + (bl Wp -

¢1wp Wpe1 ~ ¢pw1 Wp.1 ~ ¢p-1w2wpol
. 7 wpal2 )
= - [ 2 &) -
0 ¢p ¢p¢’p—l . "’¢p Wi
M. .0 2 W)
= (w, W, Wp.1] —p : " ¢p¢p—l ¢p—l ¢p—l
| 0 0 . 0] I ~¢p T 1 ) | Wp+l |
Then the element of M " can be deduced from the

—ip

consideration that both M, and M,,, are doubly symmetric.

For example, For AR(1l) process,

m”+¢)12 -, =[l —b) J

i
] -0 mpp+¢;°

and after equating elements in the two matrices,

2
m, + ¢,° =1 or mll=Ml=l-¢12=|M1|

Preceeding in this way, the elements of M, of AR(2) process

are, from M, as

2 . 2
wimg Wi+ (O, w, "+ ¢p¢p_1 Wy Wy +.. L+ 0 wiwg



69

my +627  mp, +0102 —¢» 1 -4 -2
2 2
M; = |mp+¢192 mayp+¢)° by [=|=6; myp+¢;° myz +6;95
e}
-b5 -9 l —¢2 myp+d162 myy+ér”
2 2
m, + ¢,° =1 or m, =1 - ¢,
my, + ¢1¢2 = -0, or my, = -0, (1 + ¢,)
and
M. o | 17027 —0i+y)
i ke 9
=61 (1+92) 1-¢,
Since m,, = m,,, the matrix M, is doubly symmetric.
Therefore, [M,| = (1 - ¢,° )% - 02 (1+ ¢,)°

= (1 + ‘bz)z[(l - ¢2)2 - ¢’12]

Thus, it is clear that the elements of S(¢) =w_,'M, w, are

not only a quadratic form in the w's, but also a quadratic

form in the parameters ¢,. Writing

QU' = 11, Byy onve B , the (P+1)x(p+1) matrix D can be

found, whose elements are quadratic forms of w's.
w,'M Wn = ¢u'D¢u

and write

Dy, -Dj2  -Djy3.. .=Dyp4i
—D12 D22 D‘)3.. ..D?_‘p_,_]

w)
I

143,311}

_“Dl.p-o—l D2,p+2 D3‘p+l Dp+l.p+1J
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From equation (3.3.10) it can be seen that the elements of

D, say D;; are symmetric sums of squares and lagged

products, defined by

+ ...+ W W {3.3.12)

n+1-3"'n+1-1

D;; = Dy; = W,W

5 3i + W

j iﬁ_ijI

where the sum D;; contains n-(i-1)-(j-1) terms.

Then, the likelihood function or the joint probability

function of w, is

£(wn /$,6.°) = L(¢,6,° /w,)

where

= ¢,'D ¢, ' (3.3 ,59
and the log likelihood is
L(¢,0,°/w,)=-(n/2)Lng, +(1/2) 1n [ M| - S(¢)/(26,%) (3.3.14)

To get the maximum 1likelihood estimates of the

parameters. the log likelihood function must be
differentiated by the parameters o, ¢y, ---., ¢, and
equating with zero, the equations must be solved

simultaneously.
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That 1is
S
oL ___n . () -0 (3.3.15)
oo 2 c 2 212
a a [ca]
oL -2
=Mj+0, "[Dyjs1 - 01D2551—-—¢pDpir j+1l
5¢j
= 3 5 7 & L, Bisezsel {3.3.16)
a{%L”IMpl}
where Mj =
36,

By solving (3.3.15) and (3.3.16)

c,> = S(¢)/n can be obtained easily, but it is not easy

to find the estimatescf¢gsince the M;' are the complicated

functions of the ¢,'.

Thus three alternative procedures may be used rather

than wusing the exact likelihood function.

(1) Least-square Estimates

Whereas the expected value of s(¢) is proportion to n,

the value of |M,| is independent of n and for moderate to

large samples , (3.3.12) is dominated by the term in s(¢)
and the term in|M,| is comparatively small. Thus ,by

ignoring that term , the log likelihood becomes,

L(¢, 0,2 / W, ) =~ -n/2 Ln o,° - S(¢)/20,° (3.3.17)
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and the estimates $ of ¢ obtained by maximization of
(3.3.17) @8re the least-square estimates obtained by
minimizing S(¢) . The normal equations obtained by
minimizing S(¢) are the same as second term of equation

(3.3.16). That is ,

o,’[ Dy d+i= P D2 jei=c e s e -by Dpay,g42] = O j=1,2, ,p
or Dy, j41= b, D2,j+1+¢’2 D3, jea+... .. +¢p Dpi1,5e1 1=1,2, P
substituting Jj=1, 2, ;P 1in the above equations gives

D;. = ‘i’lDzz +&'2D23 Fowaow +$pD2 p+1

D,; = ¢,D,, % Guliys B s s T o F (3.3.18)

By pet, = $1D2,p¢1 +&)2D3,p+1+ +$pr¢1,p+1

The matrix notation

§=2_1Q where d =[D;,,Dy;, Dy, p+1]
(2) Approximate Maximum Likelihood Estimates

Since the autocovariance of lag j of AR(p) process can

be expressed as,

Yj o ¢1 Y]-l - ¢2 73-2 teo.o.n +¢pY3-p
Y5 = @1 V5.1 - 02 Vo2 —eece e ® 0,9 =« i, 8, 8, «:12.3.19]
n+l1-(i+j)
Since Dyy = Zwi+le+l )
i=0

the expectation of D;; becomes



73

E(D:Lj) = [n+2-(1+j)] y 11-5l

Taking expectation of (3.3.16) gives ,

6, Mi+ (n-9)y,- (=9-1)¢, ¥5, -....- (n-i-p) &, ¥, , = 0 (3.3.20)

ov

Oa My = - n-Jiyy;v =) 1,9y Yyop receordlo) PioYp py.p 433040

and adding n times the equation(3.3.19) gives

2

G, MJ = j Y] N (j+l)¢l Yj-l TR (j+p) ¢P .Yj_p = 0 (3.3.21)
! DLHJ+1 ) ,
Therefore, by using ———— as an estimate of y .4 ., a
n-1-j
natural estimate of M; is
2| ) j+1 J+p
o, Dyi.i—————¢1D> ; -—0¢,D :
I:n—j 1,j+1 n—(j+1)¢l 3 7% n_(J+p)¢p p+l._}+|]

Substituting this estimate in (3.3.16) and solving the

resulting equations give

- =0; "=1' 2 sssa
n—j ln—(j+l) ] ’ P

D By 1 Dot
nca2 1,j+1 il 2,)+1 b, p+.l,_|+l
n-(j+p)

Then a set of 1linear equations which 1is of the
same form as (3.3.18) is obtained. Thus the least
square estimate and maximum likelihood estimate (approximate)

are the same except that D;;  is used instead of D;; , where

. nDij n+1-(i+j)
o = - = — Wi W (3.3.22)
Y n+2-i—j n+2-1- 2% L
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(3) Yule-Walker Estimates

If n i1s moderate to large, as an approximétion. the
symmetric sum of squares and product in (3.3.18) can be

replaced by

n-k
nC, = D W Wiy
t=1

on dividing by nC, throughout the resultant equation,

we obtain the Yule-Walker equations expressed in terms of

estimated autocorrelations y, =(C,./C,) .

For the parameter estimates obtained by the above three
methods, the differences are small for moderate to large
sample sizes. Box and Jenkins [Box-Jenkin, 1976] normally
used the first approximation which uses the least-square
estimates. However Salas, et . al [Box-Delleur-Yevjevich-
Lane, 1980] used the second approximation. We choose the
moment estimates since they can be computed without rigid

-

assumptions, such as, that the distribution of e is normal.

For example, the maximum likelihood estimates of AR (1)

process are

n

2. % =X

A_ 1
“—- —
Ry=t




T2

- 1 . Ao
and Gz=*"-"-T(D“—¢1D|2) where
n—

n+1-(i+))

= * n _— e
Dii =D; = Xis] = XXX q1 =R
i “_]l (ot =i 1) ]go( i+1 X j+l )

Similarly for the AR(2) process, the system of linear

equations for the parameter ¢, is
= - * - *
D2 =¢1D2 +¢2D23
* -~ * ~ *
D3 =¢1D23+¢2D;33

and it gives

5y = D15D33 = Dy3Da3 SR R Lk
D3,D33 — D33 " D3;D33-D33

Then, the estimate of the error variance becomes
~2 1 = -~ L] - *
Uy =——> ,,(Dn—‘i’lDlz-Cszw)

3.4 Test for Model fitting and Parameter Estimation

The goodness of fit tests of the AR models fitted to a

certain series can be accomplished by
(1) testing on the assumptions made for the AR model
(2) comparing the model correlogram with the fitted
correlogram and
(3) checking whether the fitted model is adequate so as to

obtain a parsimonious model.
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In these three portions, the second portion does not

need any test but just compare the two correlograms.
Tests on the assumption of the model

Two assumptions (a) independence and (b) the normality
of the residuals of the fitted model have to be tested. The

residuals of the fitted model a, may be determined from the

equation
By = (X - X) - 6,(Xeey - X)=noom $p(Xep - X) (3.4.1)
= Wy = QWi = sowns - QWep, » £ = pP+l, ...,n
where w, = X, - X are used to test the validity of the

above assumptions.

To test whether a, is an independent series or not, the
Porte Manteau lack of fit test (Box-Pierce,1970] is

appropriate to use. The test statistic is

1
Q = T zrkz (3-4.2)
k=1

where n 1is the number of observations, r, is the 1lag k
sample autocorrelation of the estimated residual series and
'l' is the maximum lag considered. It is appropriate to use

10 to 30 percent of n as 1. Then the statistic Q is

approximately xﬂﬂ,

Davies, Trigges and Newbold (Davies-Newbold, 1979] show

that the %* tables tend to overestimate the critical values

of Q for finite samples and give briefed tables of exact
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percentage points. Ljung and Box [Ljung-Box, 1978] suggest
the revised statistic

T

2
n-j

1
O = nin+2) 2:
. j=1

whose distribution appears closer to that of szp for finite

samples. Since they compute r; as,

n-j
Eaatauj

_ 1=l

and we use the definition,

n-j
E:aﬁﬁ+j
n g
rj= .t—l "
] &

it seems better for us to use Q.

If Q < xiﬁp , then &, can be taken to be independent

and it in turn implies that the selected model is adequate.

To test the normality of the residuals of the fitted
model, the skewness testd frenormality is used. The skewness
test of normality is based on the fact that the skewness
coefficient for a normal variable has zero mean and the

variance G/JE[Snedecor—Cochran, 1980). Then the 95% limits

of the skewness coefficient become-1.96 Yo/n and +1.96 ¢0/n.
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If the skewness of the residual series 1is between the

limits, the residual series is regarded as normal.
Test of the Adequacy of the model

To check whether the order of the fitted model is
adequate, the Akaike Information Criterion (AIC) can be used

[Kendall-Ord', 1983]. The AIC for an AR(p) model is
AIC(p) = n 1ln O, + 2p

where &,” is the maximum likelihood estimate of the error

variance.

The comparison between the AICs of the AR(p-1), AR(p)
and AR (p+1l) models points out the model to be used. If the
AIC(p) 4is 1less than both AIC(p-1) and AIC(p+l1l), then the
AR (p) model is the best for the given data set. Otherwise,

the model with less AIC have to be used in the fitting.

If the methods of moment 1is wused in fitting, the

estimates of error variance can be used to choose a model

instead of using the AICs. 1E 6; , the estimate of the

2 2

error variance of AR(p) is less than both 6,,° and G, ,

then AR(p) mwmodel 1is the best for the given data set.

Otherwise, the model with less 6,2 will be used in the
fitting.
Similarly for comparing two autoregressive models of

order p and p+r, MC Clave [Mc Clave,1978] proposed the

criterion,
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-~ 2 A 2

0 ——0 + -

MC = (n-p-r) g 2 :
Op+:

which is asymptotically distributed as ¥°,.In this

2

' . a2 A .
¢riterion, " @ and O,,,° are the estimates of the error

p

variance of AR(p) and AR(p+r) models.
3.5 AR Model Fitting to the Live-births and Population

In section 4,5,6 of Chapter 2, the primary
investigations for the underlying process of various
transformed series were done by using the sample auto and
partial autocorrelations. From those investigations, it was
found that the autoregressive models (AR models) can be used

to represent the following selected transformed series.

(1) The standardized series
(2) The logarithmic transformed series

(3) The difference series

The next steps in AR model fitting after the primary

investigations are

(1) finding the AR model of best fit or finding the most
appropriate order of the AR model.
(ii) estimating the model paraneters and

(iii) the diagnostic checking of the model

To be efficient in model fitting, the above steps have

to be done in the following detail procedure.

(a) First of all, it needs to decide on the highest order

of the AR model to be fitted. This can be done by examining
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the sample auto and partial correlograms of the series as

described in the previous chapter.

Let the highest order chosen be p. Then for each of

the order 1 to p.

-~

(b) The model parameters have to be estimated. These
estimates of the model parameters can be obtained by using
the method of moments (Yule-Walker equations) or the maximum

likelihood method of estimation.

(c) The estimates of the residuals are computed by using,

~ ~ -~
~

at = Wt+p - ¢1Wt+p_1 = ¢2Wc+p_2 ..... - ¢pwt 1 t=1' 2, « e e g 21
where w, = X, - X

(d) Then, the Porte Monteau lack of fit test 1is used to
decide whether the residuals of a dependence models are

uncorrelated.

(e) The AIC (Akaike Information Criterion) 1is wused to
determine which order is adequate among the fitted orders of

the dependence model if the ML method is used in (b), or the

~

estimated error variances, Gaz are simply used to determine
the most appropriate order if the method of moment is used

in (b).

The order whose AIC or 6a2 is less than respective
neighbouring value is the adequate order to use in further

analysis.

() If the order can not be determined sharply, the Mc

Clave criterion is used to choose the order of the model.



(g) After choosing the order of the model, it is tested
whether the parameter estimates of the chosen model meet

the stationary conditions or not.

3.5.1 AR Model Fitting to the Live-Births of Urban Myanmar

Since the sample autocorrelations for the lags 1 and 2
are consecutively out of the 95 percent confidence interval
of a random series (-0.4277, +0.4277) and the partial
correlation for lag(l) is out of the above interval, the
AR(2) model is chosen as the highest order to be fitted to

the observed series.

Method of moment is used to estimate the parameters of

the model. The estimates of the autoregressive parameters

and the estimate of the error variance, G.° are as shown in
Table (3.1).
Table (3.1)
Method of Moments Estimates of the Parameters for Live-

Births of Urban Myanmar

Order 61 &2 $3 G .2
1 0.797 - - 6968
Z 0.849 -0.066 - 7314
3 0.836 0.105 -0.202 7368

After finding the estimates of the parameters for each
order of the model, the estimated residual series is
computed and tested to see whether the series is random or
still contains some systematic parts. In so doing, the

Porte Manteau lack of fit test is applied to the residual
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series. The value of the test statistics and the

corresponding decisions are shown in the following Table

(3.2] .
Table (3.2)
; Porte Manteau Lack of Fit Test
Order Q Deg.Fr. ol Sig-Level Decision
1 20.51 17 27.59 5% random
2 19.38 15 25 5% random
3 19.65 13 22.36 5% random

From above tests, it can be seen that the residual
series are random. Thus, the AR(l1) to AR(3) explain the
systematic component of the observed series and AR(1l) to
AR(3) can be used to represent the underlying process of

live-births.

Since the method of moment is used to estimate the
parameters, the estimated error variance is used to choose
one of models, AR(l1) to AR(3). By examining the error
variance describe in Table (3.1), the underlying process of
live-births series is AR(1) since the 652 for the AR(1l) 1is

smaller than their respective neighbouring values.

The stationary condition of the model is met.

3.5.2 AR Model Fitting to the Standardized Series of

Live-births

The sample autocorrelations for lag(l) and lag(2) are
out of 95 percent confidence interval of a random series and

the partial autocorrelation for lag(l) is out of the above
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interval for the standardized series of live-births. Thus,
the AR(1) to AR(3) are chosen to be fitted to the

standardized series.

Then the method of moment is used to estimate the

> ]

parameters of the model. The method of moments estimates of

the mean U and variance ¢° are zero and 1.05. The method of

moments estimates of the autoregressive parameters and the

. . 2
estimated error variance, o, , for each order of the AR

model are as shown in Table (3.3).

Table (3.3)
Method of Moments Estimates of the Parameters for

Standardized Series of Live-Births

e 0, ¢ ¢ &,
1 0.797 . s 0.042
2 0.849 ~0.066 - 0.422
3 0.836 0.105 ~0.202 0.425

After finding the estimates of the parameters for each
order of the model, the estimated residual séries is
computed and tested to see whether the series 1is simply
random or still contains some systematic parts. Thus, the

same test, as before is applied to the residual series.

The value of Q with its level of significance for the

Porte Manteau lack of fit test is as shown in Table (3.4).
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Table (3.4)
Porte Manteau Lack of Fit Test

Order Q Deg.Fr. C.V Sig-Level Decision
1 20.62 17 L7 =9 5% random
2 19.52 15 25 5% random
3 19.85 13 22 36 5% random

From Table (3.4), it is clear that the residual series
are random for all orders. Therefore AR(1l) to AR(3) models

can be used as the underlying process of the standardized

series.

Since the method of moments is used to estimate the
parameters, the error variance is used to choose one of the
models AR(1l) to AR(3). From Table (3.3), it can be seen
that the estimates of the error variance of the AR(1l) 1is
less than theilr respective neighbouring values. Thus, the
AR(1) model 1is chosen to represent the underlying process

of standardized series. The stationary condition for the
AR (1) model is |$ﬂ & L Since $1 = 0.797, the stationary

condition for model is met.

3.5.3 AR Model Fitting to the Logarithmic Transformed

Series of Live-Birth

Since the sample autocorrelations for lag(l) and 1lag (2)
are out of the 95 percent confidence interval of a random
series (-0.4277, +0.4277) and the partial autocorrelation

for 1lag one is out of the above interval, the AR(3) model is
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chosen as the highest order to be fitted to the logarithmic

transformed series.

Then, the method of moments is used to estimate the
parameters of the model. The method of moments estimates of

rd

the autoregressive parameters and the estimated error

. = 12
variance, o, , for each order of the AR model are as shown

in Table (3.5).

Table (3.5)
Method of Moments Estimates of the Parameters for Log-

transformed Series of Live-Births

Order &1 62 @3 &az
i 8 0.803 - = 0.0018
2 0.873 -0.087 - 0.0019
3 0.85%3 0.3109 -0.208 0.0018

After finding the estimates of the parameters for each
order of the model, the estimated residual series is
computed and tested to see whether the series is simply
random. Thus, the Porte Monteau lack of fit test is applied

to the residual series.

The value of Q with its level of significance for the
Porte Manteau lack of fit test with the decision for each

order are as shown in Table (3.6).
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Table (3.6)

Porte Manteau Lack of Fit Test

Order Q Deg.Fr. c.v Sig-Level Decision
3 27.59 17 27.59 5% random
2 T 285 15 25 5% random
= 22.36 13 22.36 5% random

From Table (3.6) it is clear that the residual series
are random for all orders. Therefore AR(1) to AR(3) model
can be used as the underlying process of the log-transformed

series.

Since the method of moments is used to estimate the
parameters, the error variance is used to choose one of the
models AR(1l) to AR(3). Thus, the AR(1) model is chosen to

represent the underlying process of log-tranformed series.
The stationary condition for AR(1) model is |¢,]| < 1.

Since @1 the stationary - condition for model is met.

3.5.4 AR Model Fitting to the First Difference Series of

Live-Birth

The sample auto and partial autocorrelations of the
first difference series of live-births are in the 95 percent
confidence interval of a random series. The AR(3) model is

chosen as the highest order to be fitted to the first

difference series of live-births.

Then the method of moment is used to estimate the
parameters of the model. The method of moments estimates of

the autoregressive parameters and the estimated error
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-~

. 2
variance, ¢, , for each order of the AR models are as shown

in the Table (3.7).

Table (3.7)
Method of Moments Estimates of the Parameters for First

Difference Series of Live-Births

Order @1 &2 $3 &az
A 0.179 - - £83S
2 D.135% 0.247 - 2809
3 0.104 0.2297 0.327 2764

After finding the estimates of the parameters for each
order of the model, the estimated residual series is
computed and tested to see whether the series is simply
random or still contains some systematic parts. Thus, the

same test, as before is applied to the residual series.

The value of Q with its level of significance for the
Porte Manteau lack of fit test with the decicion for each
order is as shown in Table (3.8).

Table (3.8)

Porte Manteau Lack of Fit Test

Order Q Deg.Fr. c.v Sig-Level Decision
1 5.637 16 26.03 5% random
. 5.389 14 23.68 5% random
3 7.473 12 21.03 5% random

From Table (3.8) it 1is clear that the residual series

are random for all orders. Therefore AR(1) to AR(3) models
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can be wused as the underlying process of the first

difference series.

Since the method of moments is used to estimate the
parameters, the error variance is used to choose one of the
models AR(li to AR(3). From Table(3.7), it can be seen that
estimates of the error variances are different slightly
small. The Mc Clave Criterion has to be used in determining

the order of the best fit sharply.

From Table (3.7 &.° (1) = 2835 ,6,° (2) = 2809 ,
6,2 (3) = 2764 the Mc Clave criterion is
MC = (21-2) (2835-2809) /2809
= 0.176 < X(0.05,1). = 3.84,
MC = (21-3) (2835-2764) /2764
= 0.4624 < Y(c 0s.2). = 5.99,
and since Mc = 0.176 1is 1less than wamJJz = 3.84, Mc =
0.462 is less than Y(,.s2 = 5.99, the AR(1), AR(2) and
AR(3) models are not significantly different. Thus AR(1)

model is chosen to represent the underlying process of the

first difference series.

The stationary - condition for AR(1) model is |é,|< 1.

Since ¢ = 0.179, the stationarity condition is met.

3.5.5 AR Model Fitting to the Mid-Year Estimated

Population

Since the sample autocorrelations for the lag 1 to 4
were consecutively out of the 95 percent confidence interval

of a random series (-0.4277, +0.4277) and the partial
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autocorrelations for the 1lag(l) was out of the above
interval, the AR(3) model is chosen as the highest order to

be fitted to the mid-year estimated population.

Then the method of moments is used to estimate the

parameters of the model.

The estimates of the autoregressive parameters and the

' . 2
estimates of the error variance, o¢,” are as shown in Table

(3.9} .

Table (3.9)
Method of Moments Estimates of the Parameters for Series of

Mid-Year Estimated Population

Order $1 &2 @3 &.2
A 0.857 - - 2504
. 0,897 -0.047 - 2630
3 0.892 0.049 -0.108 2747

After finding the estimates of the parameters for each
order of the model, the estimated residual series is
computed and tested to see whether the series is simply
random or still contains some systematic parts. In so
doing, the Porte Manteau Lack of fit test is applied to the
residual series. The values of test statistics and the

corresponding decisions are shown in the following table,

Table (3.10).
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Table (3.10)

Porte Manteau Lack of Fit Test

Order Q Deg.Fr. C.V Sig-Level Decision
1 7.84 17 el 59 5% random
2 "6.54 15 25 5% random
3 7:79 13 22 .36 5% random

From the Porte Manteau Lack of fit test, it can be seen
that the residual series are random. Thus, the AR(1l) to
AR (3) can explain the systematic component of the'observed
series and all these models, AR(1) to AR(3) can be used to
represent the underlying process of the mid-year estimated

population.

Since the method of moments is used to estimate the
parameters, the estimated error variance is used to choose
one of the models, AR(1) to AR(3). By examiningthe estimates
of the error variance described in Table (3.11), the

underlying process of the observed series is AR(1l). Since

2
a

G,° for AR(1) is smaller than AR(2) and AR(3).
The stationary condition for the AR(1) model Iéﬂ £ L.

Since $1 = 0.857, the stationarw condition of the model

is met.




3.5.6 AR Model Fitting to the Log-transformed Series of

Mid-Year Estimated Population

The sample autocorrelation for Lag(l) to Lag(4) were out of
S5 percent .confidence interval c¢f a random series and the
partial autocorrelation for lag(l) was out of the above
interval. Thus AR(3) model is chosen as the highest order

to be fitted to the log-transformed series.

Then the method of moment 1s used to estimate the
parameters of the model. The method of moments estimates of
the autoregressive parameters and the estimated error
variance, 6.’ , for each order of the AR model are as shown

in Table (3.11).

Table (3.11)
Method of Moments Estimates of the Parameters for Log-

Transformed Series of Mid-Year Estimated Population

Order . b2 $s B’
1 0.855 - o 0.007
2 0.896 -0.048 = 0.007
3 0.895 0.05 -0.11e 0.008

After finding the estimates of the parameters for each
order of the model, the estimated residual series is
computed and tested to see whether the series is simply
random or still contains some systematic parts. Thus, the

same test as before is applied to the residual series.
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The value of Q with its level of significance for the
Porte Manteau Lack of fit test with the decision for each

order are as shown in Table (3.12).

i Table (3.12)

Porte Manteau Lack of Fit Test

Order Q Deg.Fr. oM Sig-Level Decision
1 7,22 17 27 .59 5% random
2 6.21 15 25.00 5% random
3 7.79 13 22,36 5% random

From Table (3.12) it is clear that the residual series
are random for all orders. Therefore AR(1l) to AR(3) models
can be used as the underlying process of the log-transformed

series.

Since the method of moments is used to estimate the
parameters, the error variance is used to choose one of the
models AR(1) to AR(3). It can be seen that the estimates of
AR (1) and AR(2) are equal but they are less than the wvalue
of AR(3). Thus, the AR(1]) model is chosen to represent the

underlying process of log-transformed series.
The stationary condition for the AR(1l) model ish§d<1.

Since &1 = 0.855, the stationary condition for AR (1)model

is met.



3.5.7 AR Model Fitting to the Standardized Series of
Mid-Year Estimated Population

The sample autocorrelations for Lag(l) to Lag(4) were
out of the confidence interval and the partial
autocorrelétion for 1lag(l) 1is also out of the above
interval for the standardized series. Thus AR(3) model 1is
chosen as the highest order to be fitted to the

standardized series.

Then the method of moment is used to estimate the
parameters of the model. The method of moments estimates of
the autoregressive parameters and the estimated error
variance, G.? , for each order of the AR model are &s shown

in Table (3.13).

Table (3.13)
Method of Moments Estimates of the Parameters for the

Standardized Series of Mid-Year Estimated Population

Order 6 b s sF |
1 0.857 " - 0.293
2 0.897 -0.047 - 0.308 i
3 0.892 0.049 -0.108 0.321

After finding the estimates of the parameters for each
order of the model, the estimated residual series 1is
computed and tested to see whether the series 1is simply
random or still contains some systematic parts. Thus, the

same test as before is applied to the residual series.
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The value of Q with its level of significance for the
Porte Manteau Lack of fit test with the decision for each

order are as shown in Table (3.14).

Table (3.14)

Porte Manteau Lack of Fit Test

Order Q Deg.Fr. €.V Sig-Level | Decision
1 7:899 17 27.59 5% random
2 6.540 15 25.00 5% random
3 7.796 13 22.36 5% random

From Table (3.14) it is clear that the residual series
are random for all orders. Therefore, the AR(1l) to ARI(3)
models can be used as the underlying process of the
standardized series.

Since the method of moments is used to estimate the
parameters, the error variance is used to choose one of the
models AR(1l) to AR(3). From Table (3.13), it can be seen
that the estimates of the error variance of AR(1l)i8less than
the wvalue of AR(2) and AR(3). Therefore the underlying

process of standardized series is AR(1).

The stationary condition for AR(1l) 1is |$ﬂ ¢ 1. Since

-~

¢, = 0.857, the stationary condition for model is met.




3.5.8 AR Model Fitting to the First Difference Series of

Mid-Year Estimated Population

Since the sample autocorrelations for lag(l) was out
of the 95 percent confidence interval of a random series (-
0.4293, +O:4293) and the partial autocorrelation <for the
lag(l) was out of the above interval, the AR(2) model 1is
chosen as the highest order tc be fitted to the first

difference series of mid-year estimated population.

Then, the method of moments 1is used to estimate the

parameters of the model.

The estimates of the autoregressive parameters and the

estimates of the error variance, G,° , are as shown in Table

(3:18) «

Table (3.15)
Method of Moments Estimates of the Parameters for First-

difference Series of Mid-Year Estimated Population

Order &1 62 63 G .2
1 -0.616 - - 1792
Z -0.767 -0.246 - 1779
3 -0.728 ~0.122 0.161 1559

After finding the estimates of the parameters for each
order of the model, the -estimated residual series 1is
computed and tested to see whether the series 1is simply
random or still contains some systematic parts. Thus, the

same tests, as before is applied to the residual series.
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The value of Q with its level of significance for the
Porte Manteau lack of fit test with the decision for each

order are as shown in Table (3.16).

’ Table (3.16)

Porte Marteau Lack of Fit Test

Order Q Deg.Fr. cC.V Sig-Level Decision
1 3.57 16 26.30 5% random
2 4.41 14 23 .68 5% random
3 4.32 12 21.03 5% random

From Table (3.16) it 1is clear that the residual series

are random for all orders. Therefore, the AR(1l) to AR(3)

model can be used as the underlying process of difference

series.

Since the method of moments 1is used to estimate the

parameters, the error variance is used to choose one of the

models AR(1) to AR(3). From Table (3.18), it can be seen

that the estimates of the error variance of AR(1l), AR(2),

AR (3) are not different very much. So Mc Clave criterion

has to be used in determining the order of the best fit

sharply.

From Table (3.15) 632 {l) = 1792 and 6,2 (2) = 1779
and &,° (3) = 1559 the Mc Clave criterion is

MC = (21-2)(1792-1779)/1779

g.138
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and since Mc 1is less than x“LM'nz = 3.84, the AR(1) and
AR (2) models are not significantly different.

MC = (21-3)(1792-1559) /1559
= 2,69
and since Mc is less than meazﬁ = 5.99, the AR(3) and

AR (1) models are not significantly different. Thus, the
AR (1) model is chosen to represent the underlying process of

first different series.

The stationary condition for AR(1l) model is |$ﬂ<1.

Since$1=-0.616,the stationary condition for model is met.

Comments on the Model Fitting

When the AR model is fitted to the selected transformed
series, it 1is found that the AR(l) model can be used to
represent all the series. It is also found that the moments
method and the maximum likelihood method are not
significanctly different in their results as to the model
fitting but the moments method is simple to use and the

results obtained can be checked manually.

As to various transformations, the first difference
transformation can be said to be the best since the forecast
values of the first difference transformed series are the

nearest values of the actual values.

In all the computation of this thesis, the method of
moments estimates were obtained by solving the Yule-Walker
equations. The rigid assumptions are not needed when the

\
moments method is used.




CHAPTER IV

EX-ANTE PROJECTION OF FERTILITY DATA

4.1 Projection of Live-births Data for Urban Area

Demographic predictions have had a poor record in
recent decades . The predictions have been misleading with
respect to the future levels. They have also failed to
anticipate the 1likely range of error. Nor have recent
refinements of technique improved the situation, either with
respect to the accuracy of predictions, or the derivation of
appropriate confidence interval. Indeed the continued
efforts of demographers to predict population are sometimes
justified on the grounds that they facilitate demographic

analysis, rather than the reverse.

Demographic analysis is concerned with precisely
defined rates and corresponding subtleties of population
structure, it proceeds by successive refinements of
population . But demographic forecasting techniques failed
with post-transition populations dominated by fluctuating
fertility; time series analysis of fertility can improve the

forecasts [Ronald,JASA,1974] .

In this chapter, an attempt is made to predict live-
births for selected towns in wurban Myanmar by using the
first-order autoregressive model. In the previous
chapter,various transformed methods for 1live-births and

model fitting have been mentioned. In this chapter, the
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best transformed live-birth data are used to predict the
future live-births. Moreover, three forms for forecast are

described in this chapter.
4.1.1 Three Basic Forms for the Forecast

The expression for the forecast in any one of three
different ways can be written down corresponding to the
three ways of expressing the model. [ Box-Jenkin, 1970 ].
For simplicity in notation, squared brackets imply that the

conditional expectation, at time t. Thus
( Ayl ] = El:[at+1]
[ B ] = Bulfe,il for 10

The three explicit forms for the general ARIMA model

are

(1) Directly in terms of the difference equation by

Zewd = @1Zca1ey *ee ot Qpig Zeslepa - 0y 8 .- Oq @cei-g™ e

(4<1:1 )

(ii) As an infinite weighted sum of current and previous

shocks aj,
t+l )
v
Zea= 2, Wea-j 85 = Wi Ay 41-4 (4.1.2)
j=—€0 j:O

where y, = 1 and the y weights may be obtained by equating

coefficients in

®(B) . (1 + y,B + y, B>+ ... ) = 8(B) (4.1.3)
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Equivalently , for positive 1l>q, the model may be

written in the truncated form

Zeyy= Ce(l) + @ + W; @pegay + cveed Wygden (4.1.4)

where the ‘complementary function c¢.(l) 1is equal to the

truncated infinite sum
t -
Ce (1) = E Yeor-j @5 = 2 Wie; @c-j (4.1.5)
j:-oo j=0

(iii) As an infinite weighted sum of previous observations,

plus a random shock

ey = Z Ty Zeay-3 + 8a (4.1.6)
J=1

Also, if d 2 1

Ziny (m) =2 Ty Zey-y (4.1.7)
J=

will be a weighted average, since then }Z ;= 1
j=1

The n weight may be obtained from

©(B) = (1 + mB + mm B> + ... ) .0(B) (4.1.8)
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Forecast from Difference Equation

Taking conditional expectations at time t in (4.1.1),

it can be obtained the following equation;

[2..,] = Zt ()= 9, [Zesg0] + .00+ Ppua [Zein.p-dl

=By [8esig] =5 a8y [Beigl® 8] {4.1.9)
By using the equation (4.1.2), the forecast in integrated
form

(Zen] = Ze (D= wy [Bcaal  + ook Y laca)+yslacl+

Vi (@] + ..o+ [&g,,]
Alternatively, using the truncated form of the model
(4.1.4), for positive 1>qg.
[(Zeard =2, (1) =C (1) + [@pay) +Wy [@p,pq) +o o o +Wq_q [@pey ] (4.1.11)
where c.(l) is the complementary function at origin t.

Forecasts as a weighted average of previous
observations and forecast made at previous lead times from

the same origin. Finally, taking conditional expectation in

4.1+6,

-~

[Zt¢1] = Zr_ (l)= Z nj [Zt+1-j] + [at+1] (4.1.12)
j=1

To calculate the conditional expectations which occur
in the expression (4.1.10) to (4.1.12), if j 1is a

nonnegative integer,

(Zc.51= E¢ [2¢5) = 2.4 j =0, 1, 2,000
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[Zeos) = Eo [2,5) = Z, (3) oI PHE- TR
[ac-5) = Eclagy]l = apy = 2Ze.y -Zey, (1) j=0, 1, 2,...
[at¢j] = Et [at*j] = O

Therefore, to obtain the forecast Z. one writes down
the model for Z.,, in any one of the above three explicit
forms and treats the terms on the right according to the

following rules.

The 2..5(j=0,1,2,....), which have already happened at

origin t, are left unchange.

The 2.,;(J=1,2,...),which have not yet happened,are

replaced by their forecasts it(j) at origin t.

The a,.;(j=0,1,2,...),which have happened, are available

frOlTl Zt-j-it-j"l(l) .

The a.,;(j=1,2,...), which have not yet happened are

replaced by zeros.

The variance of the 1 steps ahead forecast error for

any origin t is the expected value of

e’ (W)= (24 -Z.(1))

and is given by

1-1
vil) = {1 +) v} o’
J=i
Assuming that the a's are normal. So the conditional
pProbability distribution P(Z.,, / 2¢+2¢.y,...] of a future\
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~

value of Z.,, of the process will be normal with mean Z. (1)

1-1
and standard deviation { 1 + W5

j=1

2 }1/2 o_u

The approximate 1-¢ probability limits 2.,,(-) and

Z.,,(+) for Z.,, will be given by
1-1 r
Zea (2) = Zo(1) % pep{ 1+ )yt } s,
=1

where |¢,, is the deviate exceeded by a proportion &/2

of the unit normal distribution. The 50% and 95% limits for

Z (1) are given by

~

1-1
50% limits Z. (1) + (0.674) { 1 +3
j=1

1-1
95% limits Z,.(1) % (1.96) { 1 +Y wy;° }'? s,
j=1

The probability of the actual value z,,, will occur

within these limits z.,,.-) and z.,(+) is

Pr (Zt+l(-)<zt¢1<zt+l(+)) = 1-8
4.1.2 AR Model For Live-Births Forecasting

Data for the live-births time series for selected towns
in urban Myanmar for 1968-1988 were taken from various
issues of  the Vital Statistics Reports of urban
Myanmar.Various transformed for live-births data fitted in
AR model were tried,and the best encountered were an AR(1)

model for first difference 1live-births time series fo?
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1968-2000, together with 95% confidence interval were

obtained using AR(1) model are shown in the Table(4.1)

Forecasts for the AR(1) model of live-births series 1is

written as
(1-B)¢)(B)Zt*1= at*l p—_— 4‘1-2(1)

Where ¢(B)=1-¢B and a,,, is the white noise with mean

zero and variance cf'

Ze= (l+¢’1)Zc¢1-1'¢1zz+1-2+at+1 4.1.24(2)
Taking conditional expectation in 4.1.2(2)

2e (1) =(14+9)) 2o (1-1) -0, 2.,).,+8¢,

And then z.,, can be written as an infinite weighted sum of

current and previous shocks ajy,
Zea=Y(B) a., -. 4.1.2(3)
By equating eq” 4.1.2(1) and 4.1.2(3),we get
(1-B)$(B) = w *(B)
(1-B)y(B) = 1/¢(B)

(1-B) (1-y,B-y,B*-....) = 1/(1-¢,B)

(1-y,B-y,B’- B+y,B+y,B +yB'+ ) = 3 (¢;B)’
j=0

By equating

¢1 = -1 -y,



[
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Vi = —-¢, -1
b2 = Wi - Vs
Tg = 1Yy -,

In general Wi = Wi, - ¢;°

The interval forecast of the live-births time series
can be obtained by using this equation
X 1-1
Zo(1) £ (1.96) {1+ ws? }M% s,
j=1
The forecat of 1live-births for the vyear 1968 was
186272 and 1its actual value was 181879. So, it was very
reasonable. The forecasts overestimated the actual number
of births in 1968 due to the fertility decrease during that
year. And also 1971 to 1988 forecasts were very

reasonable.
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Forecast for The Total Live-Births Series for 1968-2000 Using AR(1) Model

Year 95% lower Limits Point Forecasts 95% Upper Limits
1970 186272

1971 164644 180779 196914
1972 178813 194948 211083
1973 174822 190957 207092
1974 177986 194121 210256
1975 165922 182058 198193
1976 159364 174599 190734
1977 152054 168189 184324
1978 150993 167128 183263
1979 156752 172887 189022
1980 165656 181791 197854
1981 161430 177565 193700
1982 172825 188960 205095
1983 175445 191580 207715
1984 180354 196489 212624
1985 183412 199547 215682
1986 189283 205148 221283
1987 192579 208714 224849
1988 186522 202657 218792
1989 187935 204070 220205
1990 189348 205483 221618
1991 190761 206896 223031
1992 192174 208309 224444
1993 193587 209722 225857
1994 195000 211135 227270
1995 196413 212548 228683
1996 197826 213961 230096
1997 199239 215374 231509
1998 200652 216787 232922
1999 202065 218200 234335
2000 203478 219613 235748
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4.2 Projection of Population Data for Selected Towns in

Urban Myanmar

In this thesis, various transformed for population data
fitted in Ag model were tried, and the best encountered were
an AR(1) model for first difference population series,
together with 95 per cent confidence intervals were obtained

by using AR(1) model are shown in Table (4.2).

The total population for that period were estimated by
the C.S.0 and they are based on the 1973 and 1973 national
census figures (VSR ,1988). So, the population data seem to
be a mathematical curve. Therefore, some of the
mathematical curves are described and fit to the population

data 1in this thesis.

Linear Change: The pattern of growth may be assumed
arithmetic progression i.e. that there is a constant amount
of increase per unit of time. This concept of a straight
line is often used not only to describe population growth

but also to project it into the future.
In symbol, P, = a + b t (4.2.1)

The estimated population for the selected towns in

urban Myanmar by the linear equation is shown in Table(4.2).

The geometric change is a compound interest type of

change, 1i.e.

P, = P, (1+r)%* " © (4.2.2)
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If the compounding is assumed to take place
continuously, the above expression can be represented by the

exponential curve, as

Pio = By @ oo (4.2.3)

The population of three selected towns in Urban Myanmar
are estimated by the 1linear curve, geometric curve and

exponential curves. They are shown in Table (4.2).

Application of the model to selected towns in Urban
Myanmar population yielded unsatisfactory results. But, the
population estimated by the mathematical curve seem to give
satisfactory results. Moreover, the estimated population of
the exponential method and geometric method has the sam=

results.

4.3 Future Trend OF fertility Data In Urban Myanmar

The most basic form of measures of fertility is tna
crude birth rate which is a ratio of birth occurred Jduring a
year to the mid-year population,usually multipiied D2y
1000.In other words,the crude birth rate shows the numbdbar o:
births per 1000 population per year,indicating an overall
effect of fertility upon the growth of population duriny i

year. It can be expressed as follows;

CBR=B/P . K

Where B = the number of births during a jear
P = population at the middle of y=zar
K =1000



The Estimated Population of The Selected Towns In Urban Myanmar

TABLE (4.2)

Year Observed Value Linear Geometric Exponential
1968 4700950 4664573

1969 4714048 4819551 4817349 4817349
1970 4842986 4974530 4936629 4936629
1971 4938418 5129509 5058863 5058863
1972 5149647 5284487 5184124 5184124
1973 5680534 5439466 5312486 5312486
1974 5376960 5594445 5444027 5444027
1975 5911850 5749424 5578825 5578825
1976 6024437 5904402 5716960 5716960
1977 6180754 6059381 5858515 5858515
1978 6338052 6214360 6063576 6063576
1979 6512218 6369338 6152229 6152229
1980 6637718 6524317 6304562 6304562
1981 6763526 6679296 6460667 6460667
1982 6921701 6834274 6620637 6620637
1983 6941515 6989253 6784568 6784568
1984 7084613 7144232 6952559 6952559
1985 7226444 7299211 7124708 7124708
1986 7380948 7454189 7301121 7301121
1987 7507803 7609168 7481901 7481901
1988 7667158 7764147 7667158 7667158
1989 7919125 7857002 7857002
1990 8074104 8051546 8051546
1991 8229083 8250908 8250908
1992 8384061 8455205 8455205
1993 8539040 8664562 8664562
1994 8694041 8696884 8696884
1995 8849019 8881477 8881475
1996 9003997 9069989 9069987
1997 9158975 9262502 9262499
1998 9313953 9459101 9459098
1999 9468931 9659873 9659869
2000 9623909 9864906 9864902

110
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The CBR for the selected towns in urban Myanmar are
shown in the Table(4.3). CBR is estimated by C.S.0.It
shows that CBR in the urban areas fluctuated arround 40
per thousand. Until the early 1970s,except for the vyears
1952 to 1954,thereafter,a feritility decline has been in
progress.Between 1971 and 1976,the reported CBR declined by
more than 29 per cent.Comparing the reported CBR for five
year averages,there was an 11.7 per cent decline between

1971-197S5 and 1976-1980.

But,the level of fertility could hardly k= considered
reliable because of the average area, whichvary from year to
year .Nevertheless,the fertility decline 1in urban areas
started around 1970. It accelerated in the late 1970's and
become stable again at around 28 per thousand population in

1980's.

In this thesis,CBR(1) is calculated by using the data
of AR(1l)model estimates of live-birth and estimated
population from (VSR) and CBR(2) 1is calculated by using the
data of AR(1l) model estimates of live-births and exponential

curve of population.

It reveals the trend in crude birth rates from.1970
to2000.The rates were obtained from various forecasts.It
shows that the CBR for the selected towns in Urban Myanmar
have declined slowly since 1972.As may be seen,the crude
birth rates fluctuated around 27 per thousand population
until the mid 1990.8incel98l, fertility declined slightly to

about 27 per thousand.
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TABLE(4.3)
The CBR for Selected Towns in Urban Myanmar
Year No.of CBR* No.of Towns CBR(1) CBR(2)
Reporting
_Towns
1970 139 37.6 125 38.46 ¥1.73
1971 138 39.2 125 36.61 35.74
1972 126 38.0 125 37.86 37.60
1973 170 325 125 33.62 35.94
1974 178 34.1 125 36.10 35.65
1975 164 28.7 125 30.79 32.63
1976 145 28.2 125 28.98 30.54
1977 115 212 125 27.21 28.71
1978 159 27.0 125 26.37 27.56
1979 158 27.8 }23 26.55 28.10
1980 146 26.9 125 27.39 28.83
1981 145 27.7 125 26.25 27.48
1982 151 27.6 125 27.30 28.54
1983 167 28.3 125 27.59 28.24
1984 167 28.3 125 2773 28.26
1985 168 28.6 125 27.61 28.01
1986 169 28.6 125 27.79 28.09
1987 169 28.6 125 21.79 27.89
1988 169 28.6 125 26.43 26.43
1989 169 28.5 125 25.97
1990 25,52
1991 25.08
1992 24.64
1993 24.20
1994 24.28
1995 23.93
1996 23.59
1997 23,325
1998 22.92
1999 22.59
2000 22.26
Sources: Nyan Myint (1988, pp-35, 69); CSO (1990);
Ministry of Planning and Finance, MPF
(1990, p-207)
CBR* is estimated by CSO
CBR(1) is calculated by using the estimated live-births from AR(1) model
and the estimated population from VSR.
CBR(2) is calculated by using the estimated live-birth by AR(1) model

and the estimated population by using exponential curve.
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Crude birth rate remained stable between the 1982 and
mid-1990 accorrding to various method of data. Since 1973,
a tendency towards declining fertility has been observed.

Total fertility fell by about 17.9 per cent between 1973 and

1983. ’

The demographic data in this thesis, although not
representative of the whole country, are comparatively
reliable. The information provided in Table (4.3) suggest a
declining trend in crude birth rates. It can be seeen that

fertility levels in Urban Myanmar have been relatively low

and may decline in the future.




CHAPTER V

CONCLUSION

Model fitting for yearly fertility data 1in Urbkan
Myanmar Fertility for selected towns in urban Myanmar, this
study demonstade the importance of the meethodological

issues in fertility studies. Because time series analysis

enhancess confidence in the results.

Time series analysis 1is a useful method for examining
changes in fertility level. The AR model is a simple time
series model for projecting the live births series. Analysis
of selected towns in urban live biths data for the period
1968-1988 resulted in the AR model(l) with lag 1 and AR
parameter coefficient of 0.179. And , forecasts of the live
births data is clears indication of the precision of the
forecasting from a stochastic rather than the traditional
deterministic births—-forecasting models. In contrast, by
presenting point rather than interval forecasts,
deterministic models tend to create the illusion that the
future is more certain than it is- this , in turn, may
result in serious errors being made in planing for the
future, for the properties of optional decisions made under
considerable uncertainty are usually rather different from
those made in situations characterized by certain or almost
certain outcomes. For instance, in a certain world
specialisation is usually on optional strategy, but when the
future is uncertain, policy should be more flexible to allow
for the different outcomes possible. Also, Ass new

information becomes available and the degree of uncertainty
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is reduced, decisions should be revised. The advantagz of
the stochastic model is that the model and reflect the
uncertainty regarding the future. In contrast, deterministic

models tend to ignore it. (1980, JASA,p39).

Although Myanmar is still considered as under-
populated, population growth must be controlled in order to
bring about significant economic development. Since Myanmar
is one of the developing countries, economic development 1s
certainly hamped by the currently moderately high
population growth rate. The higher 1level fertility, ¢the
grater the problems for socio-economic development. or
instance, even though the magnitude of food production has
declined. Therefore, it 1is necessary to slow population
growth by controlling fertility in order to achieve =zconomic

and social development in Myanmar.

Application of the model to selected towns in urban
Myanmar fertility rates yielded satisfactory results. Cruds=
birth rates fluctuated within the range of 26.25 to 38.45%
per thousand population over twenty years period, 1963-1933,
it is apparent that the crude birth rate startnd to decline
during the decade 197J-1980. This may be due to many
reasons. Of course, Myanmar 1is a Buddhist country and
Buddhism does not oppose any kind of contraception, and
because the people are familiar with modern methods of
contraception, especially pills, injections and condoas.
If the Government were to set up a family planninj
programme, fertility decline could be faster than in some
neighbouring countries such as Bangladesh and Indisa.

Currently Myanmar still seems to maintain a pro-ratalist
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altitude, although the establishment of a child-spacing
programme has recently been accepted by the Government. The
birth spacing project was funded by United Nations Fund for
Population Activities (UNFPA) in 1991 and was implemented
in (20) piiot townships. The project made a significant
ontribution by supporting the initiative to introduce birth
spacing in Union of Myanmar. The expansion of hirth spacing
programme to another (57) townships, making a total of (72)
townships were implemented in 1996. The objective of this
project 1is to 1improve the health status of mothers and
children by lowering the high fertility, morbidity and
mortality rates through birth spacing services. Therefore,
fertility level of the country seems to have a decline 1n

the future.
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